搜索资源列表
SimpleSENSEreconstruction
- 简单SENSE图像重建,即使通过反傅里叶变换重建出最终图像-The data was acquired from 4-channel array coil using EPI sequence (2-shot, matrix: 64X64, TE: 50 ms) at a 1.5T scanner. The code estimates the coil sensitivity profiles directly from the image with anatomical contrast b
K-Fold_CV_Tool
- MATLAB cross-validation tool for classification and regression v0.1 FEATURES: + K-fold cross validation. + Arbitrary train and prediction functions with parameters can be used. + Arbitrary loss function can be used. + Wrappers for
FeatureSelection_MachineLearning
- Feature selection methods for machine learning algorithms such as SVR, including one filter-based method (CFS) and two wrapper-based methods (GA and PSO). The gridsearch is for the grid search for the optimal hyperparemeters of SVR. The SVM_CV is for
cross-validation
- matlab交叉验证cross Validation,把样本集分为训练集和测试集,防止网络出现过拟合,提高网络的泛化能力和预测精度-cross Validation for matlab,to estimate the test accuracy,training accuray and validation accuracy of a neural network
bpcross
- 一个matlab写的bp人工神经网络程序,参数优化采用交叉验证办法-Write a matlab bp artificial neural network program, parameter optimization using cross-validation method
crossvalidation_svm
- matlab编写的调整svm参数的程序,其中cross是主程序,另两个是自己编写的svm核函数,如果要用matlab自带的核函数就把-t的值改成2即可。Ytrain是标记矩阵,Xtrain是特征矩阵,都由用户自己导入。可利用k倍交叉验证来选择最优的c参数。k可自行更改。-svm matlab prepared to adjust the parameters of the program, which cross the main program, and the other two are t
ANN-k-fold-cross-validation
- ann k-fold cross validation matlab cone
SRGTSToolbox
- SURROGATES工具箱是一个多维函数逼近和优化方法的通用MATLAB库。当前版本包括以下功能: 实验设计:中心复合设计,全因子设计,拉丁超立方体设计,D-optimal和maxmin设计。 代理:克里金法,多项式响应面,径向基神经网络和支持向量回归。 错误和交叉验证的分析:留一法和k折交叉验证,以及经典的错误分析(确定系数,标准误差;均方根误差等;)。 基于代理的优化:高效的全局优化(EGO)算法。 其他能力:通过安全裕度进行全局敏感性分析和保守替代。(SURROGATES Toolbox