搜索资源列表
Algebra
- 基本矩阵运算 : + - *, power, transpose, trace, determinant, minor, matrix of minor, cofactor, matrix of cofactor, adjoint, inverse, gauss, gaussjordan, linear transformation, LU decomposition , Gram-Schmidt process, similarity. b) Basic vectors functions :
C三级上机题
- 全国计算机等级考试三级的部分上级题算法,对上机考试还不是很熟的人,很有帮助(并非书上的答案,是本人自己想的算法)-National Computer Rank Examination some three superiors that the algorithm, right on the test machine is not very familiar with the helpful (and not the answer book, I want to own the algorithm
四级上机_30
- 全国计算机等级考试四级上机的部分练习题,配有我自己写的算法,算法说明和输入输出文件,使实验起来更容易。算法比较简洁易懂,大概有三十题左右(已经去掉了重复和类似的),对考四级的朋友和正在学习C的朋友会有帮助的-National Computer Rank Examination four aircraft on the part Exercises, equipped with my own writing algorithm, the algorithm descr iption and inp
C7
- VC常用数值算法集\\C7 ECLASS.CPP ECLAZZ.CPP INDEXX.CPP PIKSR2.CPP PIKSRT.CPP QCKSRT.CPP RANK.CPP SHELL.CPP SORT2.CPP SORT3.CPP SORT.C-VC commonly used numerical algorithm sets \\ C7 ECLASS.CPP ECLAZZ.CPP INDIA XX.CPP PIKSR2.CPP PIKSRT.C
shellsort111
- 附有本人超级详细解释(看不懂的面壁十天!) 一、 实际问题: 希尔排序(Shell Sort)是插入排序的一种。因D.L.Shell于1959年提出而得名。它又称“缩小增量分类法”,在时间效率上比插入、比较、冒泡等排序算法有了较大改进。能对无序序列按一定规律进行排序。 二、数学模型: 先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为dl的倍数的记录放在同一个组中。先在各组内进行直接插人排序;然后,取第二个增量d2<d1重复上述的分组和
key_sort_system
- 多关键字的排序是有一定的实用范围。例如:在进行高考分数处理时,除了对总分进行排序外,不同的专业对单科分数的要求不同,因此尚需在总分相同的情况下,按用户提出的单科分数的次序要求排出考生录取的次序。(1)假如代排序的记录数不超10000,表中记录的关键字数不超过5,各个关键字的范围均为0至100。按用户给定的排序的关键字的优先关系,输出排序的结果。(2)约定按LSD方法进行多关键字的排序。在对各个关键字进行排序时采用两种策略:其一是利用稳定的内部排序方法,其二是利用“分配”和“收集”的方法。并综合比
Matrix.rar
- 关于求矩阵秩的程序,用高斯—约当消元法实现,On the procedure for matrix rank, using Gauss- Jordan elimination method to achieve
lrr
- Matlab code to run "Robust subsapce segmentation by low-rank representation"
svm_rank.tar
- Learning to Rank的一个方法,把排序问题转换成了一个分类问题,然后用支持向量机(SVM)训练出一个模型来。-Learning to Rank of a way to sort problem is transformed into a classification problem, and then use support vector machine (SVM) to train a model.
rank
- rank of a matrix caloculation
spearman
- 用于计算等级相关系数(spearman系数)的子程序。-Used to calculate the rank correlation coefficient (spearman coefficient) subroutine.
SPARSE-AND-LOW-RANK
- 稀疏和低秩矩阵分解。 This paper focuses on the algorithmic improvement for the sparse and low-rank recovery.- Sparse and Low-Rank Matrix Decomposition Via Alternating Direction Methods.The problem of recovering the sparse and low-rank components of a matrix
ofdma-for-rank-co-ordination
- ofdma rank co ordination
learn-to-rank
- learn to rank 相关算法的文档介绍-learn to rank
spearman-rank
- Spearman rank correlation
closed-form-low-rank-representation
- 可实现闭式解低秩子空间聚类,该程序特点:收敛速度较快,但是有多个参数需要调整。参考文献:Rene Vidal, Paolo Favaro. Low rank subspace clustering (LRSC) [J]. Pattern Recognition Letters, 2014, 43: 47-61.-This program can realize closed-form low rank subspace clustering. The characteristic of the
wilcoxon-signed-rank-test
- 程序为威尔逊秩和检验程序,用于进行秩和检验计算的人员参考使用。-The procedure for the Wilson rank sum test procedure is used by the personnel for the rank sum test calculation.
svt
- 用于低秩矩阵分解方面的内容,有很好的降秩功能。(Law rank matrix decomposition)
Tensor Low-Rank Sparse Representation for Tensor Subspace Learning
- Tensor Low-Rank Sparse Representation for Tensor Subspace Learning
Tensor Low-rank Representation for Data Recovery and Clustering
- Tensor Low-rank Representation for Data Recovery and Clustering