CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 源码下载 数值算法/人工智能 搜索资源 - semi supervised clustering

搜索资源列表

  1. selfAffinity

    0下载:
  2. AP是在数据点的相似度矩阵的基础上进行聚类.对于规模很大的数据集,AP算法是一种快速、有效的聚类方法,这是其他传统的聚类算法所不能及的,-A semi-supervised clustering method based on affinity propagation (AP) algorithm is proposed in this paper. AP takes as input measures of similarity between pairs of data points. AP
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-04-07
    • 文件大小:375791
    • 提供者:lilan
  1. 192010k-average

    0下载:
  2. kmeans均值聚类算法:一种改进的基于半监督聚类的入侵检测算法ASCID(Active-learning Semi-supervised Clustering Intrusion Detection),-kmeans clustering algorithm Algorithm was simulated by KDD 99 datasets, which the experimental results demonstrate that ASCID algorithm can impro
  3. 所属分类:matlab

    • 发布日期:2017-04-16
    • 文件大小:50635
    • 提供者:huhan
  1. enhancing_semi_supervised

    0下载:
  2. enhancing semi-supervised clustering:a feature projection prespective算法实现-the implementation of the alogrithm described in the paper--- enhancing semi-supervised clustering:a feature projection prespective
  3. 所属分类:matlab

    • 发布日期:2017-03-27
    • 文件大小:725005
    • 提供者:吴尧
  1. ap_semisupervised

    0下载:
  2. Semi-supervised Affinity Propagation clustering.基于AP聚类的半监督学习算法。-The programs of semi-supervised AP are suitable for the person who has interests in studying or improving AP algorithm, and then the semi-supervised AP may be an example for reference
  3. 所属分类:matlab

    • 发布日期:2017-04-04
    • 文件大小:17893
    • 提供者:troywang
  1. Semi-supervised-learning

    1下载:
  2. 义了一个欧氏距离和监督信息相混合的新的最近邻计算函数,从而将K一均值算法很好地应用于半 监督聚类问题。针对K一均值算法初始质心敏感的缺陷,用粒子群算法的搜索空间模拟聚类的欧氏空间,迭代搜 索找到较优的聚类质心,同时提出动态管理种群的策略以提高粒子群算法搜索效率。算法在UCI的多个数据集 上测试都得到了较好的聚类准确率。-Righteousness of a Euclidean distance and supervision of a mixture of new nearest n
  3. 所属分类:AI-NN-PR

    • 发布日期:2017-03-24
    • 文件大小:424167
    • 提供者:xz
  1. semi-supervised-cluster-algorithm

    0下载:
  2. 半监督聚类是利用少量的标记数据提高聚类算法的性能,文中综述了半监督聚类算法的若干进展-Semi supervised clustering is a method to improve the performance of clustering algorithm by using a small amount of labeled data,Some advances about semi supervised clustering algorithms are reviewed in thi
  3. 所属分类:Data Mining

    • 发布日期:2017-05-05
    • 文件大小:542932
    • 提供者:王昊
搜珍网 www.dssz.com