搜索资源列表
polyfit
- 曲线拟合程序 多项式相关系数的计算方法(多项式形式1) 多项式相关系数的计算方法(多项式形式2) 最小二乘法曲线拟合 三次样条插值(自然边界条件)-polynomial curve fitting procedures correlation coefficient is calculated (the form of a polynomial) polynomial coefficient of correlation Methods (polynomial form 2
C3
- 插值 1.拉格朗日插值 2.有理函数插值 3.三次样条插值 4.有序表的检索法 5.插值多项式 6.二元拉格朗日插值 7.双三次样条插值
yangtiaochazhi
- 该程序能实现第一型三次样条插值,边界条件是端点的一阶导数。结果可以同时显示每段区间的插值多项式。
main
- 分段线性插值,分段二次多项式插值,分段三次多项式插值,三次样条插值-Piecewise linear interpolation, sub-quadratic polynomial interpolation, sub-cubic polynomial interpolation, cubic spline interpolation
analysis2
- 数值分析B计算实习作业二:分别用分段线性插值、分段二次多项式插值、 分段三次多项式插值和三次样条插值对所给的数据进行细化 -Numerical Analysis of B calculated internship operation II: piecewise linear interpolation, respectively, sub-quadratic polynomial interpolation, sub-cubic polynomial interpolation and
interpoints
- vc下实现的分段线性插值、二次多项式插值、三次多项式插值、三次样条插值,并配有MATLAB测试程序-vc implementation of the piecewise linear interpolation, quadratic interpolation, cubic polynomial interpolation, cubic spline interpolation, and test procedures with MATLAB
C2
- 拉格朗日插值,有理函数插值,三次样条插值,插值多项式-Lagrange interpolation, rational function interpolation, cubic spline interpolation, polynomial interpolation
duoxiangshichazhidezhendangxianxianghesanciyangtia
- 多项式插值的震荡现象与三次样条插值实验,用C++实现,包括实验报告。-Polynomial interpolation of the shock phenomenon and the cubic spline interpolation experiment, using C++ to achieve, including the report of the experiment.
NumericalComputationMethod
- 某985/211大学研究生计算方法课程作业及源程序,包含常见的高斯法,克劳分解,雅克比赛得儿迭代,牛顿差值多项式,三次样条插值多项式,龙贝格积分法的源代码-Calculation of a 985/211 Graduate course work and the source, including common Gaussian law, Crow decomposition, Jacques games have children iteration, Newton difference po
calculation
- 典型数值计算方法。包括:经典四阶龙格库塔法、高斯列主元法、牛顿法、龙贝格、三次样条插值算法、M次多项式曲线拟合、二分法、不动点法、霍纳法、牛顿-拉弗森迭代等十项典型算法的算法流程及C源代码和例子。-Typical numerical calculation. Include: classical fourth order Runge-Kutta method, Gauss main-element method, Newton method, Romberg, cubic spline inte
interpolation
- 插值 拉格朗日插值 有理函数插值 三次样条插值 有序表的检索法 插值多项式 二元拉格朗日插值 双三次样条插值-Rational function interpolation Lagrange interpolation cubic spline interpolation order polynomial interpolation table binary search method Lagrange interpolation bicubic spline in
gaodengshuxue
- 可实现的算法:软件说明: 1.全主元高斯约当消去法2.LU分解法3.追赶法4.五对角线性方程组解法5.线性方程组解的迭代改善6.范德蒙方程组解法7.托伯利兹方程组解法8.奇异值分解9.线性方程组的共轭梯度法10.对称方程组的乔列斯基分解法11.矩阵的QR分解12.松弛迭代法第2章插值1.拉格朗日插值2.有理函数插值3.三次样条插值4.有序表的检索法5.插值多项式6.二元拉格朗日插值-The algorithm can be realized: Software Descr iption:
EX_2_SPLINE3
- 第二类边界条件三次样条插值多项式,参考,施吉林等编著《计算机数值方法》第三版,第三章第6节,6-3中三次样条插值算法设计。-Spline Interpolation
computing
- 包括: 列主元Gauss消去法解线性方程组; 矩阵的LDLT和Cholesky分解; 追赶法解三对角方程组; Jacobi和Gauss-Seidel方法解方程组; Newton插值多项式和三次样条插值多项式; 复化Simpson公式求解定积分; Romberg方法求解定积分; 二分法和割线法求非线性方程的解。-Include: Main-element Gauss elimination method for solving linear equations
a
- 矩阵与数值分析:高斯法,高斯列主元法,G_S迭代,牛顿法,jacobi迭代法,G-S迭代法 ,牛顿法求根,三次样条插值,多项式拟合,复化Simpson方法,复化梯形方法,n=3的Gauss_Lengendre公式,4阶Runge-Kutta法求解微分方程-Matrix and numerical analysis: Gauss method out PCA Gaussian law, G_S iteration, Newton' s method, jacobi iterative m
nihe
- 拟合多项式,包括了四种方法(多项式相关系数的计算方法(多项式形式1))、(最小二乘法曲线拟合)、(三次样条插值(自然边界条件))。-Fitting polynomial
CalcBspline
- 三次样条插值,三次样条函数: 定义:函数S(x)∈C2[a,b] ,且在每个小区间[ xj,xj+1 ]上是三次多项式,其中 a =x0 <x1<...< xn= b 是给定节点,则称S(x)是节点x0,x1,...xn上的三次样条函数。 若在节点x j 上给定函数值Yj= f (Xj).( j =0, 1, , n) ,并成立 S(xj ) =yj .( j= 0, 1, , n) ,则称S(x)为三次样条插值函数。-Cubic spline interpol
assignment5
- 牛顿插值多项式和三次样条插值多项式: 已知: 当时: 计算函数在点处的值; 求插值数据点的牛顿插值多项式和三次样条插值多项式; 计算和相应的函数值和牛顿插值多项式和三次样条插值多项式; 计算和并解释你得到的结果。-Newton interpolation polynomial and cubic spline interpolation polynomial
NEWTON
- 该程序实现对制定函数进行Newton插值多项式和三次样条插值多项式的计算。-The program functions to achieve the development of Newton interpolation polynomial and cubic spline interpolation polynomial calculations
method-of-interpolation
- 各种插值算法 1 拉格朗日插值(POLINT) 2 有理函数插值(RATINT) 3 三次样条插值(SPLINE(二阶导数值)) 4 有序表的检索法(LOCATE(二分法), HUNT(关联法)) 5 插值多项式(POLCOE(n2), POLCOF(n3)) 6 二元拉格朗日插值(POLIN2) 7 双三次样条插值(SPLIE2)-Various interpolation algorithm 1 Lagrange Interpolation (POLINT)