搜索资源列表
kmean
- k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。-k-means algorithm process as follows: First of all, the object data from the n choose k
k_means
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-In statistics and machine learning, k-means clustering is a method of cluster analysis which aims to partition n observations into
XGHS
- 计算地震数据多道数据相关系数,来判断多道间的相似度。-Multi-channel seismic data calculated the correlation coefficient to determine the similarity between multi-channel.
colaberate-filtering
- 协同过滤 推荐系统 基于共同评分的用户相似度计算-user simularity compute
src
- k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-k-means algorithm accepts parameters k n and the previously input data is divided into k-clustering objects in order to make
dtw.m
- 语音识别的计算function文件。 可以计算出2个语音之间的差值并且无视语速的问题。 值越小说明相似度越高。 -Voice recognition function calculation file. You can calculate the difference between the two voice and speech rate of ignoring the problem. The smaller the value the higher the degree of simil