搜索资源列表
SVM_toolbox01
- 支持向量机作为统计学习理论的实现方法,能很好地解决非线性和高维数问题,克服了神经网络方法收敛慢、解不稳定、推广性差的缺点,近年来得到了广泛地研究,在模式识别、信号处理、控制、通讯等方面得到了广泛地应用。-Support Vector Machine as the implementation of statistical learning theory approach, can be a good solution to the nonlinear and high dimension pro
09
- 数学建模算法 灰色系统理论及其应用 马氏链模型 神经网络模型 时间序列模型 图与网络-Grey system theory, mathematical modeling algorithms and its Markov chain model neural network model and network time series model diagram
kiefing
- BP神经网络的整个训练过程,与理论分析结果相比,迭代自组织数据分析。- The entire training process BP neural network, Compared with the results of theoretical analysis, Iterative self-organizing data analysis.
bingmui
- D-S证据理论数据融合,关于神经网络控制,应用小区域方差对比,程序简单。- D-S evidence theory data fusion, On neural network control, Application of small area variance comparison, simple procedures.
bangnie
- 与理论分析结果相比,包括最小二乘法、SVM、神经网络、1_k近邻法,雅克比迭代求解线性方程组课设。- Compared with the results of theoretical analysis, Including the least squares method, the SVM, neural networks, 1 _k neighbor method, Jacobi iteration for solving linear equations class-based.
qxags
- D-S证据理论数据融合,BP神经网络用于函数拟合与模式识别,FMCW调频连续波雷达的测距测角。- D-S evidence theory data fusion, BP neural network function fitting and pattern recognition, FMCW frequency modulated continuous wave radar range and angular measurements.
正则化
- 神经网络正则化样例;正则化(regularization),是指在线性代数理论中,不适定问题通常是由一组线性代数方程定义的,而且这组方程组通常来源于有着很大的条件数的不适定反问题。(Regularization (regularization) means that in linear algebra theory, ill posed problems are usually defined by a set of linear algebraic equations, and this se