搜索资源列表
最速下降法程序源代码
- 用最速下降法实现无约束模型的优化计算。
optim.rar
- 多变量非线性优化模型求解,对约束条件建立m文件,Multi-variable nonlinear optimization model for solving the establishment of restrictive conditions on m file
Optimization
- 约束最优化方法--最速下降法(也叫梯度法),是人们用来求多个变量函数极值问题的最早的一种方法。-Constrained optimization methods- steepest descent method (also known as gradient method), is used for multiple variables function Extremum Problems earliest methods.
Outside-the-penalty-function-method
- 外点罚函数方法,可以用来求解约束优化问题,也可以用来被调用在智能算法中-Point outside the penalty function can be used for solving constrained optimization problems, can also be used in intelligent algorithm called
cg
- 无约束优化中的共轭梯度算法程序,解压缩后就可以用了-Unconstrained optimization of the conjugate gradient algorithm procedure can be extracted after the
L-BFGS
- 自己编的,实现l-bfgs解无约束优化问题-Own, and the realization of l-bfgs Unconstrained optimization problems
MathematicalModelingandMathematical
- 数学建模与数学实验(第3版) 第1讲 数学建模简介 第2讲 MATLAB入门 第3讲 MATLAB作图 第4讲 线性规 第5讲 无约束优化划 第6讲 非线性规划 第7讲 微分方 第8讲 最短路问题程 第9讲 行遍性问题-Mathematical Modeling and Mathematical Experiments (3rd edition) Section 1 Introduction to Mathematical Modeling 2 speaker
STRSCNE
- 给出变量的上下边界、初值和代价函数,能够搜索代价函数最小值时的变量取值。属于带约束的优化算法,可以用来求算非线性方程组。-STRSCNE is a Matlab code for constrained nonlinear systems of equations F(x)=0 l<=x<=u where F: R^n--> R^n, l and u a
cvx
- CVX是一个基于MATLAB的凸优化模拟系统。 CVX打开Matlab的一种建模语言,允许使用标准的MATLAB表达式语法指定约束和目标。 -CVX is a Matlab-based modeling system for convex optimization. CVX turns Matlab into a modeling language, allowing constraints and objectives to be specified using standard Matl
cunter
- 经典无约束优化数值算法代码,牛顿法的算法在matlab中的实现。-unconstrained optimization numerical algorithm
gloabal-optimization
- 包含简单约束的全局优化算法,matlab版本-Contains a simple constraint global optimization algorithm, matlab version
Trust-Region-program
- 用matlab实现了信赖域算法,主要用于无约束优化问题的求解-Using matlab to achieve the trust region algorithm, mainly used for solving unconstrained optimization problems
单纯形法Matlab程序-2016-11-17
- 一般线性规划问题具有线性方程组的变量数大于方程个数,这时会有不定的解。当决策变量个数n和约束条件个数m较大时,单纯形法是求解线性规划问题的通用方法。 从线性方程组找出一个个的单纯形,每一个单纯形可以求得一组解,然后再判断该解使目标函数值是增大还是变小了,决定下一步选择的单纯形。通过优化迭代,直到目标函数实现最大或最小值(In general linear programming problems, the number of variables with linear equations is