搜索资源列表
gaussjor
- 全主元高斯-约当消去法,解线性方程组,内含函数以及调用例子-all PCA Gauss-Jordan elimination method, the solution of linear equations, functions and includes examples Call
xxfc
- 全主元高斯约当消去法 2.LU分解法 3.追赶法 4.五对角线性方程组解法 5.线性方程组解的迭代改善 6.范德蒙方程组解法 7.托伯利兹方程组解法 8.奇异值分解 9.线性方程组的共轭梯度法 10.对称方程组的乔列斯基分解法 11.矩阵的QR分解 12.松弛迭代法-PCA-wide Gauss Jordan elimination method 2.LU decomposition method 3. To catch up with law 4.
C_J_Complex
- 采用全选主元高斯-约当消去法求解复系数线性代数方程组。其中ar存放复系数矩阵实部,ai存放复系数矩阵虚部。br存放右端复常数向量实部,返回解向量实部;bi存放右端复常数向量虚部,返回解向量虚部。-With full pivoting Gauss- Jordan elimination method for solving linear algebraic equations with complex coefficients. Which ar stored real part of compl
Gauss_Jordan
- 大型稀疏方程组的全选主元高斯-约当消去法,面对迭代法解线性方程组是会出现除数为0的情况,可用这种方法解决。-the face of iterative method for solving linear equations is zero divisor will be the case, can be resolved in this way.
GJDN
- 全选主元高斯-约当消去法同时求解系数矩阵相同而右端具有m组常数向量的线性代数方程组AX=B的全部解-QuanXuan primary gaussian-about when elimination technique and then the coefficient matrix is the same and the right side of the constant vector with m linear algebra equations AX = B of all solutions
gaodengshuxue
- 可实现的算法:软件说明: 1.全主元高斯约当消去法2.LU分解法3.追赶法4.五对角线性方程组解法5.线性方程组解的迭代改善6.范德蒙方程组解法7.托伯利兹方程组解法8.奇异值分解9.线性方程组的共轭梯度法10.对称方程组的乔列斯基分解法11.矩阵的QR分解12.松弛迭代法第2章插值1.拉格朗日插值2.有理函数插值3.三次样条插值4.有序表的检索法5.插值多项式6.二元拉格朗日插值-The algorithm can be realized: Software Descr iption:
SolveLinearEqutations
- 全选主元高斯-约当消去法求解稀疏线性方程组 输入参数a[]系数矩阵,n线性方程阶数,b[]右端项 输出参数b[]方程组的解 返回值 : 1求解成功 0求解失败-Select the main element Gauss- Jordan elimination method for solving sparse linear equations Input parameters a [] coefficient matrix, n order linear equations, b