搜索资源列表
Bayes.rar
- 使用Iris数据集,朴素贝叶斯分类算法。,The use of Iris data set, Naive Bayes classification algorithm.
k-means-and-cure-in-Iris-Data-Set
- 聚类算法实验,采用两种不同类型的聚类算法:基于划分的聚类方法k-means和基于层次的聚类方法CURE,采用的数据集是:Iris Data Set,数据集中共包含150组数据信息。 材料中有详细的说明文档,具体介绍了算法实现的细节,很容易理解-Clustering algorithm experiment, using two different types of clustering algorithm: Partition-based clustering method k-means
Density_Estimation
- 分别采用GMM和KDE对Iris数据集进行密度建模,并进行对比。通过EM算法来确定GMM参数,通过交叉验证来确定K值-GMM and KDE respectively Iris data set of density modeling, and compared. GMM by EM algorithm to determine the parameters of K determined by the value of cross-validation
MLT Assignment 1 code
- Iris Data set with knn and basyain classifier techniques