搜索资源列表
KMEANS
- 关于聚类的运用matlab仿真的PAM算法反对法 个发
KMEANS
- C++版本的kmeans算法,可以实现任意维度,任意数量的聚类,输出信息非常完整。-C++ version of the kmeans algorithm can achieve any dimension, any number of clustering, the output information is complete.
kmeans
- 数据挖掘里面的经典的聚类算法 K-means-K-means
kmeans
- 这是用C++编写的数据挖掘的聚类算法。算法中使用了链表结构做为存储数据的容器。-It is written in C++, data mining clustering algorithm. Algorithm is used to store data as a linked list structure of the container.
kmeans-in-statistics
- 这是K-means聚类算法的源代码,可实现任意多统计数据的归类处理。代码为原创,用途主要在数理统计方面,而不是常见的图像处理等方面。内附详细的使用说明。-This is the K-means clustering algorithm source code, enabling the classification of any number of statistical data processing. Code for my original, uses mainly in mathemat
FB_DataMing_kmeans
- k-means数据挖掘算法,基于kmeans聚类算法工艺参数基准值的挖掘-mining data mining of the k-means algorithm, based on the kmeans clustering algorithms process parameters reference value
kmeans
- k_means方法的聚类算法,多维数据可用-clustering algorithm k_means methods, multidimensional data is available
KMeans
- K-均值聚类算法,属于无监督机器学习算法,发现给定数据集的k个簇的算法。 首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,为每个点找距其最近的质心, 将其分配给该质心对应的簇,更新每一个簇的质心,直到质心不在变化。 K-均值聚类算法一个优点是k是用户自定义的参数,用户并不知道是否好,与此同时,K-均值算法收敛但是聚类效果差, 由于算法收敛到了局部最小值,而非全局最小值。 K-均值聚类算法的一个变形是二分K-均值聚类算法,该算法首先将所有点作为一个簇,然
Kmeans
- 该算法是实现Kmean聚类算法。包含初始聚类中心,聚类成员列表,最终聚类中心,最终聚类中心的距离,方差分析表,每个聚类中的案例数。-The algorithm is a clustering algorithm to achieve Kmean. Contains the initial cluster centers, cluster membership list, the final cluster centers the final cluster centers, ANOVA tab
kmeans
- K-means的聚类算法,比较有用的代码,希望对大家有用。-K-means clustering algorithm, more useful code, we hope to be useful.
kMeans
- 用python实现k-means算法。随机生成二位可视化数据集 然后进行可视化聚类(The k-means algorithm is implemented with Python. Randomly generate two bit visual data set and visualize clustering.)