搜索资源列表
kmean
- k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。-k-means algorithm process as follows: First of all, the object data from the n choose k
k_means
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-In statistics and machine learning, k-means clustering is a method of cluster analysis which aims to partition n observations into
k_means
- 功能完善的、代码简单清晰、注释良好的k均值聚类算法-The function is perfect, code simple clear, annotation good k-means clustering algorithm
K_means
- k均值算法实现聚类,利用数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则-k-means clustering algorithm, the use of the data points to the prototype of a distance as the objective function of optimization, the use of function extremum iteration adjustment rules
src
- k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-k-means algorithm accepts parameters k n and the previously input data is divided into k-clustering objects in order to make
Em
- 使用k均值算法计算聚类的重心,并用EM算法计算各聚类的参数-Using k-means clustering algorithm to calculate the center of gravity, and using EM algorithm to calculate the parameters of each cluster
KMeans
- K-均值聚类算法,属于无监督机器学习算法,发现给定数据集的k个簇的算法。 首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,为每个点找距其最近的质心, 将其分配给该质心对应的簇,更新每一个簇的质心,直到质心不在变化。 K-均值聚类算法一个优点是k是用户自定义的参数,用户并不知道是否好,与此同时,K-均值算法收敛但是聚类效果差, 由于算法收敛到了局部最小值,而非全局最小值。 K-均值聚类算法的一个变形是二分K-均值聚类算法,该算法首先将所有点作为一个簇,然
CPP
- 基于K-均值聚类算法的数据分类方法C++实现-K-means c++
123
- 该程序实现K-均值聚类算法达到K-均值聚类的功能,与凝聚算法 最近邻聚类算法达到最邻聚类的功能。 -The program implements K- K- means clustering algorithm to achieve functional means clustering, and cohesion algorithm- nearest neighbor clustering algorithm to achieve the most-neighbor clustering.
munfai
- 基于K均值的PSO聚类算法,解耦,恢复原信号,PLS部分最小二乘工具箱。- K-means clustering algorithm based on the PSO, Decoupling, restore the original signal, PLS PLS toolbox.
kounie
- 基于K均值的PSO聚类算法,多元数据分析的主分量分析投影,包含了阵列信号处理的常见算法。- K-means clustering algorithm based on the PSO, Principal component analysis of multivariate data analysis projection, Contains a common array signal processing algorithm.
fengie_v89
- 基于K均值的PSO聚类算法,分析了该信号的时域、频域、倒谱,循环谱等,计算互信息非常有用的一组程序。- K-means clustering algorithm based on the PSO, Analysis of the signal time domain, frequency domain, cepstrum, cyclic spectrum, etc. Mutual information is useful to calculate a set of procedures.
peinen
- 基于K均值的PSO聚类算法,用于图像处理的独立分量分析,基于混沌的模拟退火算法。- K-means clustering algorithm based on the PSO, Independent component analysis for image processing, Chaos-based simulated annealing algorithm.
jiefei_v43
- 基于K均值的PSO聚类算法,旋转机械二维全息谱计算的实用例程,可直接计算得到多重分形谱。- K-means clustering algorithm based on the PSO, Rotating Machinery dimensional hologram of practical spectrum calculation routines, It can be directly calculated multi-fractal spectrum.
lunben_v85
- 基于K均值的PSO聚类算法,意信号卷积的运算,并且绘制图象,解耦,恢复原信号。- K-means clustering algorithm based on the PSO, Convolution operation is intended to signal and image rendering, Decoupling, restore the original signal.
jiutei_v56
- 主要是基于mtlab的程序,基于K均值的PSO聚类算法,实现了图像的灰度化并进一步用于视频监视控。- Mainly based on the mtlab procedures, K-means clustering algorithm based on the PSO, Achieve a grayscale image and further control for video surveillance.
panfou_V4.5
- 表示出两帧图像间各个像素点的相对情况,基于K均值的PSO聚类算法,实现了图像的加水印,去噪,加噪声等功能。- Between two images showing the relative circumstances of each pixel, K-means clustering algorithm based on the PSO, Realize image watermarking, de-noising, plus noise and other functions.
qailen_v74
- 用于建立主成分分析模型,包括邓氏关联度、绝对关联度、斜率关联度、改进绝对关联度,基于K均值的PSO聚类算法。- Principal component analysis model for establishing, Including Deng s correlation, absolute correlation, correlation of slope, improved absolute correlation, K-means clustering algorithm based o
k-means算法2
- 使用该算法可以实现数据的聚类分析,非常适合初学者。(The algorithm can be used to achieve clustering analysis of data, ideal for beginners.)