搜索资源列表
Lagrange_input_data
- 掌握Lagrange插值算法,并应用算法于实际问题 观察Lagrange插值的龙格现象-master Lagrange interpolation algorithm, algorithm and application in practical problems observation Lagrange Runge phenomenon
shuzhifenxikechengsheji
- 考虑在一个固定区间上用插值逼近一个函数。显然,Lagrange插值中使用的节点越多,插值多项式的次数就越高。我们自然关心插值多项式增加时,Ln(x)是否也更加靠近被逼近的函数。龙格(Runge)给出的一个例子是极著名并富有启发性-Consider a fixed-interval interpolation using a function approximation. Obviously, Lagrange interpolation nodes are used the more the n
zxx11
- 计算方法里常用的四种方法,龙贝格,龙格库塔,三次样条,拉格朗日-Four commonly used in the calculation methods, Romberg, Runge-Kutta, cubic spline, Lagrange
Numerical-Calculation-in-C-language
- 数值计算中经典方法的C语言通用程序。包含LU分解法,复化辛普森法,改进欧拉法,拉格朗日插值法,列主元素法,牛顿迭代法,最小二乘法拟合和四阶龙格-库塔法,支持文件读写。-The code is the classic method of numerical calculation of the C language common procedures. Including LU decomposition, re-oriented Simpson method, Improved Euler me
VC_numerical_analysis
- 本人写的关于数值分析的源码,使用VC6.0开发,对于学习数值分析的朋友会有很大帮助。主要有:牛顿法、二分法、改进欧拉、高斯赛德尔迭代、高斯消去法、拉格朗日插值、龙贝格算法、龙格库塔、牛顿插值、雅可比迭代、约当消去法。-I write about the numerical analysis of the source code, using VC6.0 development, and friends will be very helpful for learning numerical ana
runge
- 拉格朗日均匀插值法显示Runge现象,后又改进使用了切比雪夫插值点,使得误差中的Wn+1值减小,消除了Runge现象。-Lagrange uniform interpolation Runge phenomenon, then improved using Chebyshev interpolation points, the cut makes error in the Wn+1 value decreases, the elimination of the Runge phenomenon.
lagrange
- 对[-5,5]作等距划分 Xi = -5 +ih,h =10/n , i = 0, 1, …, n,并对Runge 给出的函数 y =1/(1+x*x) 。 作Lagrange插值,取n=10,20计算插值多项式Pn(x) 在x=4.8处的误差,并作分析。 -Of [5,5] be equidistant Xi =-5+ih, h = 10/n, i = 0, 1, ..., a function of n, and Runge given y = 1/(1+x* x). As Lagr
2
- 针对存在奇点的一个函数,通过选取等距节点和余弦形式的节点来研究对runge现象的抑制。(In view of a function of singular point, the Runge phenomenon is suppressed by selecting equidistant nodes and cosine form nodes.)
