搜索资源列表
-MUL_estimators-
- 本算法包括最大似然估计,最小二乘估计,基于EM算法的多种混合高斯分布估计,EM算法测试实例,绘制每种分布的plot函数。非常有参考价值! - A Collection of Fitting Functions A collection of fitting functions for various Distributions. The provided files are an excellent source for EM based Matlab work.
zuiyouhua
- 此源码包是我本学期最优化理论课程的大作业,其中包括了我自己写的以下常用最优化算法的实现代码:最速下降法,牛顿法,非线性最小二乘法,DFP法。fun1,fun2是两个测试函数。谢谢!-This is my source packages optimization theory this semester courses in large operations, including my own to write the following commonly used optimization al
TestUseMatlab
- VC 中调用MATLAB 程序功能: 为了在vc中调用MATLAB而写的一个简单测试程序 设置路径: 根据MATLAB所在盘而定,例如我的matlab是装在D盘的,所以需要包含的路径为 D:\MATLAB6p1\extern\include\,在工程中设置 需包含的头文件: //matlab中的头文件调用matlab的函数 #include "engine.h" 需要连接的LIB库: D:\MATLAB6p1\extern\lib\win32\dig
f1
- 这是几个常用的测试函数,通过这个测试函数可以比较算法性能的优劣。-This is a test of several commonly used functions, through this test function can compare the algorithm performance is good or bad.
numerical-integration
- 数值积分的matlab代码,通过了调试测试,含有一个实现函数,以及一个测试用主函数。-Matlab code for numerical integration, through the commissioning test, with an implementation function, and a test main function.
interpolation
- 该matlab代码为插值函数,包含拉格朗日差值以及其他差值,含有测试主函数。-The matlab code for the interpolation function, including the difference, and other difference between the Lagrangian, containing the test main function.
mainGA1
- 基于matlab的实数编码,求函数极值,内设四个经典测试函数,以验证算法有效性,三个没有问题,其中一个有小问题,细心的人可以发现-based on matlab ,real genetic algorithm,in search for the max or min point of function ,4 functions are tested ,proved it to be a good code .just so
Interpolation
- 本程序包内用matlab编写数值计算方法中的插值的源代码,包括Newton插值法,拉格朗日插值法,在mainInt.m文件中测试,并与拟合函数进行比较。供学习数值计算的程序员参考。-This program package using matlab numerical method of interpolation of the source code, including the Newton interpolation, Lagrange interpolation method, test
CG_DESCENT-C-6.7.tar
- 用C语言实现CG_DESCENT算法,另外对部分测试函数用matlab编写-Achieve CG_DESCENT algorithm using C language, in addition to some of the test function using matlab
matlab-KICA
- kica-故障监测 通过对自回归模型中测量矩阵引入时滞参数得到一个适用于动态系统的增广矩阵;然后,选择核函数,计算核矩阵,将增广矩阵映射到高维空间进行白化;最后,利用改进的快速ICA方法提取出独立成分实现对新的测试数据进行在线监测-kica-Fault monitoring
Least-Mean-Square-LMS-master
- %这是LMS的实现 测试LMS是否正确: 我将估计一个生成的AR函数的重量/系数(% This is an implementation of LMS % To test LMS if it works correctly: % I will estimate the weights/coefficients of a generated AR function)