搜索资源列表
44fe979b4813b
- 数值分析中的欧拉算法 本文建立在數值分析的理論基礎上,能夠在Matlab環境中運\行,給出了理論分析、程序清單以及計算結果。更重要的是,還有詳細的對算法的框圖說明。首先運\用Romberg積分方法對給出定積分進行積分,然後對得到的結果用插值方法,分別求出Lagrange插值多項式和Newton插值多項式,再運\用最小二乘法的思想求出擬合多項式,最後對這些不同類型多項式進行比較,找出它們各自的優劣。 -numerical analysis of Euler algorithm is base
newton_raphson
- Summary: Newton-Raphson method for all real roots of the polynomial. MATLAB Release: R11 Descr iption: This M-file calculates all the real roots of the given polynomial. It calls syn_division, a synthetic division function, and derivate, differ
NumericalLinearAlgebra
- 数值线性代数的Matlab应用程序包 共13个程序函数,每个程序函数有相应的例子函数一一对应,以*Example.m命名 程序名称 用途 Method 方法 GrmSch.m QR因子分解 classical Gram-Schmidt orthogonalization 格拉母-斯密特 MGrmSch.m QR因子分解 modified Gram-Schmidt iteration 修正格拉母-斯密特 householder.m QR因子分
legendrefit.rar
- Legendre polynomial fitting(勒让德多项式拟合) 该算法程序找出N阶勒让德多项式你的的权值系数 ,Legendre polynomial fitting (Legendre polynomial fitting) procedures to identify the algorithm N-order Legendre polynomials your weight coefficient
zernfun
- 波面的zernike多项式拟合,在光学测试领域应用相当广泛-Wave surface zernike polynomial fitting, in the field of application of a wide range of optical test
multifit
- 功能:离散试验数据点的多项式曲线拟合 调用格式:A=multifit(x,y,m) 其中:x: 试验数据点的x坐标向量 Y: 试验数据点的y坐标向量 m: 拟合多项式的次数 -Functions: discrete experimental data points, the polynomial curve fitting call format: A = multifit (x, y, m) where: x: experimental data points, x
ffsd
- 水库库容-水位关系曲线是水库调度、水资源优化的基础,本程序实现其多项式拟合-Reservoir storage capacity- the water level curve is the relationship between reservoir operation, water resources to optimize the basis, the procedures to achieve its polynomial fitting
45095smoothing
- 这个帖子中我想讨论的是移动窗口多项式最小二乘拟和平滑方法,粗糙惩罚方法,以及kernel平滑方法。-Posts in this discussion I think are moving window least squares polynomial fitting smoothing method, crude methods of punishment, as well as the kernel smoothing method.
matlab_trm
- MATLAB 有约束信赖域算法,以四元多项式为算例 适用于学习最优化算法的数学专业学生以及其他数值分析课程的同学, 程序清晰,对MATLAB的学习也有很大的帮助,同时程序还有一些不足,读者自己须根据实际问题更正。-MATLAB constrained trust region algorithm to quaternion polynomial example for the application of optimization algorithms in the learning o
LMS_poly_fit
- 最小二乘实现多项式拟合,数值分析作业,给初学者作为参考。-Achieve least-squares polynomial fitting, numerical analysis operations as a reference for beginners.
shuzhifenxikechengsheji
- 考虑在一个固定区间上用插值逼近一个函数。显然,Lagrange插值中使用的节点越多,插值多项式的次数就越高。我们自然关心插值多项式增加时,Ln(x)是否也更加靠近被逼近的函数。龙格(Runge)给出的一个例子是极著名并富有启发性-Consider a fixed-interval interpolation using a function approximation. Obviously, Lagrange interpolation nodes are used the more the n
chazhiproject
- 数值分析中拉格朗日插值,切比雪夫插值多项式的求解,有具体题目-Numerical analysis of Lagrange interpolation, Chebyshev interpolation polynomial solution, there are specific topics
RSdecoder_BMalgoritmus
- DECODED = RSDEC(CODE,N,K) attempts to decode the received signal in CODE using an (N,K) Reed-Solomon decoder with the narrow-sense generator polynomial. CODE is a Galois array of symbols over GF(2^m), where m is the number of bits per symb
Findzero
- 该matlab程序为使用迭代法求出多项式的零点,通过了调试测试。-The matlab program for the use of iteration zero polynomial obtained by the commissioning tests.
lsm
- 最小二乘法matlAB源码最小二乘实现多项式拟合,数值分析作业,给初学者作为参考-Achieve least-squares polynomial fitting matlAB source least squares, numerical analysis operations, as a reference for beginners
matlab--jisuanfangfa
- 计算方法,实现LU分解,高斯列主元消去法,和多项式插值,样条插值等数值计算-Calculation methods to achieve LU decomposition, out PCA Gaussian elimination, and polynomial interpolation, spline interpolation numerical
approximation
- matlab多项式近似,基空间为普通多项式-matlab polynomial approximation, the base space as an ordinary polynomial
Unary-Polynomial-Regression-Model
- 一元多项式回归模型及其Matlab程序,已知各年度的税收数据见表11,预测第15年的税收-One dollar polynomial regression model and its Matlab program, known tax data for each year in Table 11, forecast the 15th year of tax
integral
- 求解多项式3x^2+4x+5的积分,并用两个多项式表示(The integral of polynomial 3x^2+4x+5 is solved and expressed by two polynomials)
拉格朗日插值+MATLAB源程序代码
- 拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。(The Lagrange interpolation method can find a polynomial that happens to be taken to the observed value at the point of each observation. Mathematically, the Lagrange interpo