搜索资源列表
-
0下载:
模拟退火算法的基本思想是从一给定解开始,从邻域中随机产生另一个解,接受Metropolis准则允许目标函数在有限范围内变坏,它由一控制参数t决定,其作用类似于物理过程中的温度T,对于控制参数的每一取值,算法持续进行“产生—判断—接受或舍去”的迭代过程,对应着固体在某一恒定温度下的趋于热平衡的过程,当控制参数逐渐减小并趋于0时,系统越来越趋于平衡态,最后系统状态对应于优化问题的全局最优解,该过程也称为冷却过程,由于固体退火必须缓慢降温,才能使固体在每一温度下都达到热平衡,最终趋于平衡状态,因此控制
-
-
0下载:
模拟退火fortran程序,可以根据优化函数设置参数-C Simulated annealing is a global optimization method that distinguishes
C between different local optima. Starting from an initial point, the
C algorithm takes a step and the function is evaluated. When minimizin
-
-
0下载:
metropolis algorithm code is a useful tool to generate estimated values.
-
-
0下载:
运用Metropolis-Hasting算法生成任意的二维高斯分布-Use Metropolis-Hasting algorithm to generate an arbitrary two-dimensional Gaussian distribution
-
-
2下载:
模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis [1] 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。(The earliest idea of Simulated Annealing (SA) was put forward by N. Metropo
-