搜索资源列表
PCA
- 用来进行主成分分析,实现数据压缩功能,也可以做特征提取与分类-Be used for principal component analysis, data compression, you can also do feature extraction and classification
stprtool
- 贝叶斯理论,PCA等等数学方法用于编程实现约简、分类等多种功能。-Bayesian theory, PCA, etc. The method has been applied mathematical programming to achieve reduction, classification and many other features.
kunqie_v53
- Relief计算分类权重,借鉴了主成分分析算法(PCA),结合PCA的尺度不变特征变换(SIFT)算法。- Relief computing classification weight, It draws on principal component analysis algorithm (PCA), Combined with PCA scale invariant feature transform (SIFT) algorithm.
nangjing_v66
- Relief计算分类权重,Gabor小波变换与PCA的人脸识别代码,在matlab环境中自动识别连通区域的大小。- Relief computing classification weight, Gabor wavelet transform and PCA face recognition code, Automatic identification in the matlab environment the size of the connected area.
meipan_v28
- 信号维数的估计,Relief计算分类权重,是学习PCA特征提取的很好的学习资料。- Signal dimension estimates, Relief computing classification weight, Is a good learning materials to learn PCA feature extraction.
PCA_classifier_version1b
- 许多图像问题需要某种物体的检测,其中图像之间的物体的外观有自然的变化。 如人脸识别,病变检测,神经通道分割。 这些图像问题可以通过手动注释图像对象来解决,以训练识别正常物体外观的模型。 这可以通过基于PCA的最大似然分类器来完成。(PCA algorithm suitable for detection / recognition of 2D image "objects")