搜索资源列表
BpNet
- 三层BP神经网络的算法实现,主要实现了训练和预测两个方法供外部调用。
RBFyuanchengxu
- 在RBF神经网络学习过程中,I出F神经元先计算输入与中心之间的距离,然 后再对这一距离进行某种非线性变换。输出层和隐藏层分别完成不同的任务,这两层学习的策略也不相同。输出层是对线性权进行调整,采用的是线性优化策略, 因而学习速度较快。而隐藏层是对传递函数的参数进行调整,采用的是非线性优 化策略,因而学习速度较慢。 RBF算法选用高斯函数作为隐藏层传递函数时,由隐藏层来实现从 x哼R,(x)的非线性映射,由输出层来实现从R,(X)--->y。的线性映射。-In the R
ANN
- 用两层神经网络实现的分类器,一个小demo,随机产生数据并分类-Neural network of two layers is used to implement data classifier, a small demo
04.CNN处理CiFar
- 以python语言为基础,利用tensorflow机器学习架构,两层卷积神经网络实现,CiFar数据集图片分类功能。(Based on Python language, using tensorflow machine learning architecture, two-layer convolutional neural network, CiFar data set image classification function.)