搜索资源列表
Ex1
- 模式识别某次课程的作业,完成了高斯分布下的两种贝叶斯分类器,以及非参数的K近邻、Parzen窗方法,采用UCI机器学习数据库中的某些数据作为样本,使用交叉验证方法确定参数-Pattern recognition of a particular course work, completed under the two Gaussian Bayesian classifier, and the non-parametric K-nearest neighbor, Parzen window meth
Cluster_DBSCAN
- DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,它将簇定义为密度相连的点的最大集合。 该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。DBSCAN算法的显著优点是聚类速度快且能够有效处理噪声点和发