搜索资源列表
EM
- EM算法Matlab实现。最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)-EM algorithm by Matlab. Maximum expected (EM) algorithm is probabilistic (probabilistic) model to find maximum likelihood parameter estimation or m
NaiveBaye
- NaiveBayes 训练函数 通过对训练数据进行NaiveBayes 算法估计 产生先验概率估计和似然概率估计-NaiveBayes Training Produce likelihood and prior matrix
nbem.tar
- Naive bayes classifer的具体实现,使用多模态事件模型表示,提供EM算法用于半监督和无监督学习,最大似然估计用于有监督学习-The Naive bayes classifer implementation, using a multi-modal event model EM algorithm for semi-supervised and unsupervised learning, maximum likelihood estimation for supervised
RELS
- 增广最小二乘的递推算法对应的噪声模型为滑动平均噪声,扩充了参数向量和数据向量H(k)的维数,把噪声模型的辨识同时考虑进去。最小二乘法只能获得过程模型的参数估计,而增广最小二乘法同时又能获得噪声模型的参数估计,若噪声模型为平均滑动模型,,则只能用RELS算法才能获得无偏估计。当数据长度较大时,辨识精度低于极大似然法。-Augmented least squares of recursion algorithm corresponding noise model for moving average
EM
- EM算法,统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。程序用C++实现,注释写得很清晰-Expectation-maximization algorithm,based on Maximum Likelihood Estimation,C++ program
em1
- 使用最大期望算法可以在概率模型中寻找参数最大似然估计。-Using the maximum expected algorithm can seek parameters of maximum likelihood estimation in the probabilistic model
em聚类
- em算法指的是最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(latent variable)的概率参数模型的最大似然估计或极大后验概率估计。(Expectation Maximization Algorithm use for clustering)