搜索资源列表
svd_0.1.tar
- Netflix Prize 中的协同过滤算法 svd-Netflix Prize svd
filter
- 科学研究中常用的协同过滤算法的delphi语言实现,代码中有注视。-Commonly used in scientific research collaborative filtering algorithm delphi language, code in attention.
mahout-distribution-0.4-src
- Apache Mahout 是 Apache Software Foundation(ASF)旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序。经典算法包括聚类、分类、协同过滤、进化编程等-Apache Mahout is the Apache Software Foundation (ASF)' s an open source project, to provide some areas of expansion of th
MLProject
- 协同过滤算法的一份文档,关于netflix项目的介绍-cf netflix
cf
- 协同过滤推荐算法综述 cf netflix-cf netflix
Netflix-Prize
- Netflix Prize 中的协同过滤算法 -Netflix Prize
netflix
- Netflix Prize 中的协同过滤算法 代码实现 C-Netflix Prize
netflix
- Netflix Prize 中的协同过滤算法 北大 博士论文-Netflix Prize
PMF
- Probabilistic Matrix Factorization 算法 用VS2010 C++实现,用于协同过滤。performs well on the large, sparse, and very imbalanced Netflix dataset。-we present the Probabilistic Matrix Factorization (PMF) model which scales linearly with the number of observ
svdfeature-1.1.6
- CF svdFeature, 基于C++开发的,利用svd奇异矩阵分解建立的协同过滤工具箱。可以解决常用的所有协同过滤问题。对于推荐系统的建立至关重要,是很好的学习和使用的工具箱。协同滤波也是最有机器学习感觉的方法之一,我们大家都爱它!-CF svdFeature, a well performed toolkit of confiltering method based on svd, which is developed using C++ programming language. It
slopeOne
- 协同过滤中的slopeone,可以用来预测活动用户对目标项目的评分-slopeone for collaborative filtering,to predict score for active user on target item
NewsRecommend
- 简单的基于用户的协同过滤的实现,基础学习-Simple user-based collaborative filtering implementations based learning
CF-recommendation-algorithm
- 简单协同过滤推荐算法的实现代码,希望对大家有用-Simple collaborative filtering recommendation algorithm implementation code, I hope useful
coll-
- 协同过滤代码,请认真书写上传资料的详细功能、包含内容说明(至少要20个字)。尽量不要让站长把时间都花费在为您修正说明上。压缩包解压时不能有密码。-recommend system
UserCF
- 推荐算法,基于用户的协同过滤算法,python 实现,简单快速。-recommend algorithm ,collaborate filter algorithm based on user ,python implement.simply and fast
GudongRecommendation-master
- 基于深度学习和协同过滤算法实现问卷调查内容推荐,通过深度学习中的tensflow构建项目评分矩阵,利用协同过滤算法产生推荐结果。(Based on the depth learning and collaborative filtering algorithm, the content of the questionnaire is recommended. The project score matrix is constructed through the tensflow in depth
Bayesian
- 基于贝叶斯的协同过滤算法,电影评分推荐,数据库ml-100k(Collaborative filtering algorithm)
movie-recommendation-python-master
- 利用协同过滤算法对movielens中的数据进行电影推荐(Collaborative filtering algorithm for movie recommendation in movielens)