搜索资源列表
Workpiecefeatureextraction
- 1、有9个工件图像,要求从本章讲授的特征提取方法中,选择3~5种提取工件特征并给出数字结果;链码为必选方法,给出数字结果和图形显示,做到链码和原图像的双向变换显示。(实验报告中应描述相应的特征提取方法并略述实现过程) 2、设计的界面中要具备功能:任选1个工件作为目标,以上述实现的特征提取方法识别该目标的工件类型(即序号),并显示该判别基准特征的数据。 3、有可能的话试用聚类、训练或其他方法对这些工件进行分类。 -err
chexingshibie
- 一种用于图像目标识别的神经网络及其车型识别应用-A target for image recognition neural network and its application of models to identify
LS-SVMlab1.5
- 支持向量机,用于图像分类分割,目标检测识别,人工智能信息处理-support vector machine has been widely used in classification and object identification.
jchshibie
- 支持向量机(SVM)是一种基于超平面分类的新的学习方法,具有很强的泛化能力。研究了支持向量机的学习机理,以及实现支持向量机的序贯最小优化算法(SMO),并用来对舰船图像进行识别。首先将待识别目标进行二维小波分解,获取不同尺度下的小波系数,然后对其进行主元分析,得到的主元分量作为支持向量机的特征量输入。实验结果表明,该方法具有良好的分类性能。-Support Vector Machine (SVM) is a hyperplane-based classification of new learn
Image_Feature_Selection_Method_Based_on_Immune_Enc
- 针对目标与背景两类图像模式识别问题,在已有的特征选择方法基础上,提出了一种新颖的基于免疫分子编码机理的图像特征选择方法(IACA). 该方法借鉴生物免疫系统的抗体分 子编码机理,在对样本进行参数估计情况下,提出熵度量单个特征对于目标和背景的识别敏感度 从集合的角度研究并且定义了特征之间的包含和互补关系 并且基于组成抗体分子氨基酸结合能量最小原则,提出了关于图像目标的免疫抗体构建规则 最终实现了寻找最优特征子集的算法IACA ,该特征子集的维数通过算法自动获得无需人为设定,选择结果为目标的“免
MeanPShift
- 李志国硕士学位论文:基于Mean Shift算法的目标跟踪.目标跟踪技术在军事、工业、安保、智能交通、医学和科学研究等方面都具有重要的意义,应用前景广阔.目标跟踪把图像处理、自动控制、信息科学有机结合起来,形成了一种能从图像信号中实时地自动识别目标、提取和预测目标位置信息、自动跟踪目标运动的技术,是当前计算机视觉、模式识别与智能系统等领域研究的重要课题.-Li Zhiguo Master Thesis: Based on Mean Shift Algorithm for Target Track
Computer-vision-based-lpr-System
- 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所 指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提 取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学
tdplatform
- 视频侦查 目标搜索 以图搜图 视频检索 视频浓缩 视频摘要 图像检测 图像识别 神经网络 目标检测 目标识别 缺陷检测 外观识别 车型识别 车牌识别-Video scout, target search, search images relying on images, video retri , video concentrate, video abstract, image detection, image recognition, neural network, target detect
DeepLearnToolbox_CNN_lzbV3.0
- CNN - 主程序 参考文献: [1] Notes on Convolutional Neural Networks. Jake Bouvrie. 2006 [2] Gradient-Based Learning Applied to Document Recognition. Yann LeCun. 1998 [3] https://github.com/rasmusbergpalm/DeepLearnToolbox 作者:陆振波 电子
OpenCode_luzhenbo
- [原创]混沌分析,聚类分析,支持向量机,群体智能优化,深度学习(卷积神经网络)Matlab工具箱全开源版本下载 作者: 陆振波 毕业院校:海军工程大学,船舶与海洋工程(水声工程),博士 精通方向:信号处理,图像处理,人工智能,模式识别,支持向量机,深度学习,机器学习,机器视觉,群体智能,非线性与混沌,Matlab与VC++混编,大数据 擅长技能:团队激励,战略规划,企业文化,组织架构,C,C++,Matlab,OpenCV,并行计算,图像处理,智能视觉,卷积神经网络,人脸检测,行
NatureDeepReview
- 深度学习允许由多个处理层组成的计算模型来学习具有多个抽象层次的数据表示。这些方法极大地提高了语音识别、视觉对象识别、目标检测以及药物发现和基因组学等许多领域的最新进展。深度学习发现复杂的结构在大数据集,通过使用反向传播算法来指示一台机器应该如何改变其内部参数,用于计算在每一层的代表性,从上一层的代表。深层卷积网在处理图像、视频、语音和音频方面取得了突破性进展,而递归网络则在文本和语音等连续数据上起到了作用。(Deep learning allows computational models th
Intelligent-monitoring-platform
- 智能监控平台的网站服务基于Flask开源框架,图像识别与信息提取功能则基于cv2和tensorflow等一系列相关的第三方库。以网页的形式进行人脸识别、目标检测、目标跟踪等,并且可以存储相关的操作记录、用户登录、管理员登录(Intelligent monitoring platform's website service is based on Flask open source framework, while image recognition and information extract