搜索资源列表
jchshibie
- 支持向量机(SVM)是一种基于超平面分类的新的学习方法,具有很强的泛化能力。研究了支持向量机的学习机理,以及实现支持向量机的序贯最小优化算法(SMO),并用来对舰船图像进行识别。首先将待识别目标进行二维小波分解,获取不同尺度下的小波系数,然后对其进行主元分析,得到的主元分量作为支持向量机的特征量输入。实验结果表明,该方法具有良好的分类性能。-Support Vector Machine (SVM) is a hyperplane-based classification of new learn
smo--c
- 支持向量机的序列最小优化(smo)分类算法 c++实现,-SVM sequential minimal optimization (smo) classification algorithm c++ implementation
SVM
- 支持向量机分类程序,使用高斯核函数,SMO顺序最优化算法,为学习SVM提供参考-SVM program, using a Gaussian kernel, SMO sequence optimization algorithm to provide a reference for learning SVM