搜索资源列表
yckzx
- 一个用C语言编写的基于遗传K中心的数据聚类源代码。-a C language based on genetic data centers K cluster source.
rbf1
- 此源代码是用MATLAB训练RBF网络,用的是数据中心聚类法,算法中没有用MATLAB中的训练函数
kmeans
- k-means算法 自定义数据样本和类中心 已经调试实现 并且有图清晰表示
MFY_kmeans
- 这是我帮一个本科生做的毕业设计,实现的数据挖掘的k均值和k中心算法,其中包含了我做的两个二维的数据集,感觉要预先知道k的参数值,不是很方便-This is what I do to help an undergraduate graduation Design, Implementation of the Data Mining mean k and k center algorithm, which includes me to do two two-dimensional data sets
dataMining.rar
- 数据挖掘的软件,集成了关联规则、k-均值聚类、模糊聚类、k-中心点聚类四种算法,software of data mining
vec_center
- 基于lewis的类中心向量。类中心向量分类器。基于lewis 的数据集。 -Lewis-based Center for Vector class. Center for Vector-type classifier. Lewis-based data sets.
KMEANS
- k-means C++ 源代码, 修正原来的错误, 增加的新功能 1、用vector实现其存储 2、直接在程序中读取数据集 3、结果可以保存到文件中 4、用户可以输入聚类个数 5、初始聚类中心随机选择(代码自动随机)-k-means C++ source code, fixes the original error, the increase in new features 1, 2, with the vector to achieve its store dire
KMEANS
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类
kmeans
- k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-k-means algorithm takes parameters k and then advance the input data object is divided into n-k-clustering in order to make
K-means
- 聚类算法(K-means)源代码,通过对该代码的运行,可以实现对各种数据的聚类显示,最终选出聚类中心-Clustering algorithm (K-means) source code, run through the code, can display a variety of data clustering, selected a cluster center
k_means
- k均值处理流程: (1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2) 循环(3)到(4)直到每个聚类不再发生变化为止; (3) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (4) 重新计算每个(有变化)聚类的均值(中心对象)-k means
kmeans
- 数据挖掘Kmeans算法C/C++语言实现。 提供接口让使用者可以指定输入输出文件、聚类结果中类别个数、中心点计算方式、初始化方法。-Kmeans,data mining algorithms,C/C++language. Provides the interface so that users can specify the input and output file, type in the number of clustering results, the center of ca
BJM
- 采用梯度下降法确定RBF神经网络基函数的中心,煤气炉数据辨识的仿真研究-Using gradient descent method to determine the center of the RBF neural network basis function, the identification of the gas furnace data simulation study
apcluster
- AP聚类算法:Affinity Propagation (AP) 聚类是最近在Science杂志上提出的一种新的聚类算法。-Affinity Propagation (AP) 聚类是最近在Science杂志上提出的一种新的聚类算法。它根据N个数据点之间的相似度进行聚类,这些相似度可以是对称的,即两个数据点互相之间的相似度一样(如欧氏距离) 也可以是不对称的,即两个数据点互相之间的相似度不等。这些相似度组成N×N的相似度矩阵S(其中N为有N个数据点)。AP算法不需要事先指定聚类数目,相反它将所有的
NWPU_shumojingsai_A
- 2013年西北工业大学“工大正禾杯”数模竞赛A题(供应链网络的建立与道路破坏问题)源码及结果数据。算法:基于遗传算法的配送中心选址。-2013 Northwestern Polytechnical University " work Taisho Wo Cup" Mathematical Contest in Modeling A question (the establishment of the supply chain network and road damage) s
kmeans1
- K-means算法,算法步骤如下: Step1.利用式(2)计算距离矩阵D=(),其中=dist[i, j] (); Step2.扫描坐标距离矩阵D,寻找距离的最大值和最小值,用式(3)计算limit; Step3.扫描坐标距离矩阵D,寻找矩阵中距离最小的2个数据a,b,将数据a,b加入集合,={a,b},同时将数据a,b从U中删除,更新距离矩阵D; Step4.利用 (4)式在U中寻找距离集合最近的数据样本t,如果小于limit,则将t加入集合,同时将t从集合U中删除,更新
k12
- k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。-K- means algorithm accept input k Then could be divided into k n data object clustering in order to make the clustering obtained
psoKmedoid
- 结合粒子群和中心值算法实现数据集的聚类,得到所需要的聚类结果-Particle swarm and the central value of the data set clustering algorithm to obtain the desired clustering results
k_medoids
- 数据挖掘 k中心点算法 matlab示例-data mining k-medoids matlab example
rbf
- 自己编写RBF神经网络程序,RBF神经网络隐层采用标准Gaussian径向基函数,输出层采用线性激活函数,其中数据中心、扩展常数和输出权值均用梯度法求解,它们的学习率均为0.001。其中隐节点数选为10,初始输出权值取[-0.1,0.1]内的随机值,初始数据中心取[-1,1]内的随机值,初始扩展常数取[0.1,0.3]内的随机值,输入采用[0 1]的随机阶跃输入(Write your own RBF neural network, RBF neural network hidden layer