搜索资源列表
k_means
- k均值处理流程: (1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心; (2) 循环(3)到(4)直到每个聚类不再发生变化为止; (3) 根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (4) 重新计算每个(有变化)聚类的均值(中心对象)-k means
shuzishibie
- 以数字与字母识别系统的基本处理流程为主线,从待识别数据的获取入手,通过预处理、特征的提取与选择,到分类器的设计等部分都进行了较为详尽的分析与研究,MATLAB仿真实验表明;采用最小距离法对所给出的一组数字及字符图片进行不同的分块识别,最终得出分8块识别率为85.71 ;分16块识别率为95.71 ;分20块识别率为95 ;具有较高的识别率。-The basic process flow of the numbers and letters recognition system as the ma
444
- 算法流程:选定训练集和测试集-数据预处理-交叉验证选择最佳参数-分类准确率-预测-利用最佳参数训练SVM-Algorithm flow: selected training set and test set- data preprocessing- cross-validation selection of the best parameters- classification accuracy- prediction- training SVM using the best parameter
DR_CNN_scripts
- 高光谱图像分类,利用CNN,里面有全套的流程,包括数据处理,样本生成,测试,精度评价。(hyperspectral image classification based on CNN)