搜索资源列表
weka402
- < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:classifier中的ZeroR.OneR.NaiveBayes.DecisionTable.IBK.C45,还有聚类,数据预处理等.
KNN(CSHARP)
- 基于不断学习的贝叶斯-KNN文本分类算法的设计与实现,给出原始几个类别的文本文件,通过机器学习,获取各个类别文本内容的主要特征,在这个基础上,给出待分类的文件库,系统通过自动分类,对文件库中的文本进行分类,把文件分配到最有可能的类别中。-based learning Bayesian-KNN text classification algorithm design and implementation given several types of the original text file,
ams-svm
- 支持向量机多参数自动选择优化程序!机器学习,数据挖掘工具!matlab版!
Autologic
- 基于机器学习的自动逻辑推理机。本程序用归结反演策略实现了命题逻辑系统的自动推理。把要解决的问题作为一个要证明的命题,其目标公式被否定并化成子句形,然后添加到命题公式集中去,把消解反演系统应用于联合集,并推导出一个空子句(NIL),产生一个矛盾。-based on the automatic machine learning logical reasoning machine. The procedures used attributed inversion strategy to achieve
judge_binaries
- 自动地分类和聚集文档,可以选择作为一个Web服务。这个程序完全是用Java编写的,利用了 Weka机器学习工具包。-automatic classification and gathering documents, we can choose as a Web service. This procedure is completely written in Java, Weka use of machine learning kits.
Matlab遗传算法改进程序
- 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算
PNN
- PNN又称为概率神经网络,它最初由数学家Specht于1990年提出,后经Master[1995]等不断发展和完善,已成功地应用于机器学习、人工智能、自动控制等众多领域.概率神经网络比多层前馈网络的数学原理简单,且易于实现-PNN is also known as the probabilistic neural network, which was first introduced by the mathematician Specht in 1990, after the Master [1
SGA
- 基本遗传算法的C语言源程序。(遗传算法的应用范围极其广泛,它可应用于函数优化、组合优化、生产调度问题、自动控制、机器人学、图像处理、人工生命、遗传编程以及机器学习等领域。)-Basic genetic algorithm C language source code. (Genetic algorithm extremely broad range of applications, it can be applied to function optimization, combinatorial
New_Genetic_Algorithm
- 遗传算法及其育种:GA于20世纪60年代由美国Michigan大学J.H.Holland教授[1]首先提出。它可广泛应用于人工智能、机器学习、函数的优化、自动控制等领域。GA的突出特点是将问题的解空间通过编码转换为GA的搜索空间,把问题的解转换为生物的个体,并借助生物的遗传和进化理论,对多个个体同时进行选择、交叉和变异操作。这样,可以较快地搜索到最优解。但是,遗传算法易陷入局部最优。搜索效率还不是很高。因此,为了克服这些缺点缺点,本文提出了育种算法,可以较好地解决遗传算法的问题。-Genetic
BP_Network
- 机器学习中的单层感知器学习算法,可自动实现两个向量的逻辑与运算。-Machine learning in single-layer perceptron learning algorithm, can be self-fulfilling logic of the two vectors and computing.
source
- ID3算法实现机器学习和分类,根据训练结果,自动生成可以运行的C++语言代码。-ID3 machine learning algorithm and classification, according to the training results, it can run automatically generated C++ language code.
KNN0.0_0.0
- 这是用java实现的KNN算法分类器 实现了机器的自动学习与文本自动分类 仅供学习使用-This is a java implementation of the KNN algorithm with classifier achieved the automatic machine learning and text categorization learning to use only
adaptive-genetic-algorithm
- 自适应GA SVM 参数选择算法研究Param eter selection algorithm for support vector machines based on adaptive genetic algorithm 支持向量机是一种非常有前景的学习机器, 它的回归算法已经成功地用于解决非线性函数的逼近问题. 但 是, SVM 参数的选择大多数是凭经验选取, 这种方法依赖于使用者的水平, 这样不仅不能获得最佳的函数逼近效果, 而且采用人工的方法选择 SVM 参数比较浪费
Multi-class-SVM-Image-Classification
- 基于神经网络的遥感图像分类取得了较好的效果,但存在固有的过学习、易陷入局部极小等缺点.支持向量机机器学习方法,根据结构风险最小化(SRM)原理,表现出很多优于其他传统方法的性能,本研究的基于多类支持向量机分类器的遥感图像分类取得了达95.4 的分类精度.但由于遥感图像分类类别多,所需训练样本较大,人工选择效率较低,为此提出以人工选择初始聚类质心、C均值模糊聚类算法自动标注训练样本的基于多类支持向量机的半监督式遥感图像分类方法,期望能在获得适用的分类精度的基础上有效提高分类效率-Neural ne
kmean.tar
- 聚类分析源代码,用C++实现,主要用于机器学习,数据自动分类-K-mean machine learn
DecisionTree
- ID3 人工智能,机器学习算法,自动生成决策树-ID3 artificial intelligence, machine learning algorithms, automatically generate decision trees
Automatic-People-Counting-
- 提出了智能视频监控中基于机器学习的自动人数统计系统。。该系统通过机器学习的方法对视频序列中人的头肩部位进行准确地检测。克服了传统检测方法如连通域分析和简单模板匹配的不足。-Automatic people counting system based on machine learning in intelligent video surveillance. . The system through machine learning methods to accurately detect the
DesicionTree
- 机器学习中利用信息熵进行决策树的自动学习-Disicion Tree of Machine Learining
机器学习实战
- 机器学习,人工智能,是一个学习人工智能的好学习资料。建议下载(Machine learning, artificial intelligence, is a good learning material for learning artificial intelligence. Suggest Download)
Machine learning
- 提供监控场景下多张带有标注信息的行人图像,可定位(头部、上身、下身、脚、帽子、包)的基础上研究行人精细化识别算法,自动识别出行人图像中行人的属性特征。(It provides a number of pedestrian images with tagged information under the monitoring scene, and can study the pedestrian refinement recognition algorithm based on the locat