搜索资源列表
1
- 基于边缘直方图的快速汽车标志识别方法,论文-Histogram based on the edge of the rapid scan method of vehicle
BP-
- 基于改进BP 神经网络的移动机器人寻线控制神经网络系统具有自学习和自适应的能力,同时有很强的容错性和鲁棒性,适用于处理难于语言化的模式信息。为使移动机器人沿地面标志线自主运动,采用CCD 图像传感器与PC/104总线相结合的硬件系统,运用神经网络的模式识别功能,实现了机器人的寻线控制,实验结果表明该方法是可行的,能有效地提高移动机器人对环境的适应性和其智能化水平。- Neural Network has the ability of self-learning and self-adaptati
utf8''Traffic-sign-recognition
- 项目基于Tensorflow进行实现。 #### 文件说明: --- * input_data.py: 图片的输入 * traffic_sign_cnn.py: 用cnn进行训练分类 * testDemo.py: 用于测试已经训练出来的模型,输入单个图片输出结果,并分类到文件夹 #### 数据集说明: --- * 这里是列表文本使用的是比利时的交通标志数据集,可以网上自己找,里面有62个分类。 #### 网络说明: --- *