搜索资源列表
RandomForest
- ID3决策树+随机森林算法生成决策森林,采用投票机制进行决策;有训练数据aaa和测试数据bbb;非常适合机器学习的初学者-The ID3 the+ random forest algorithm to generate decision forests voting mechanism for decision-making training data the the aaa and test data bbb ideal for machine learning beginners
Ensemble-Learning
- 集成学习将若干基分类器的预测结果进行综合,具体包括Bagging算法和AdaBoost算法;还有随机森林算法,利用多棵树对样本进行训练并预测的一种分类器-Integrated learning integrates the prediction results of several base classifiers, including Bagging algorithm and AdaBoost algorithm and random forest algorithm, using a t
R
- 本文分别利用逻辑回归、决策树和随机森林三种模型针对员工是否会过早离职问题进行探究,结果显示三种方法预测结果的精确度依次增加,分别为78.59%、96.8%和 99%,并且三种模型均显示员工演满意度是最重要的特征变量。(Predicting employee turnover)
随机森林算法分类、回归
- 随机森林分类器,matlab写的,直接可以运行,不需要该任何东西,详细看readme和案例。-Random Forest classifier, matlab write, direct run, does not require that anything
19.决策树与随机森林
- 决策树和随机森林,非常实用的PPT资料,推荐(Decision tree and random forest, very useful PPT data, recommended.)