搜索资源列表
winsvm
- 实现SVM的分类可以选择SVM类型,核函数类型,以及训练参数
libsvm-2.85-dense
- LIBSVM源码。LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、 易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、 n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM ) 等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。
支持向量机算法及其代码实现
- 支持向量机(SVM),起初由vapnik提出时,是作为寻求最优(在一定程度上)二分类器的一种技术。後来它又被拓展到回归和聚类应用。SVM是一种基于核函数的方法,它通过某些核函数把特征向量映射到高维空间,然後建立一个线性判别函数(或者说是一个高维空间中的能够区分训练数据的最优超平面,参考异或那个经典例子)。假如SVM没有明确定义核函数,高维空间中任意两点距离就需要定义。
RVM_matlabToolBox
- 相关向量机(RVM)的matlab源程序,包含快速算法,内含代码使用说明。 RVM采取是与支持向量机相同的函数形式稀疏概率模型,对未知函数进行预测或分类。 优点: (1) 不仅仅输出预测目标量的点估计值,还可以输出预测值的分布. (2) 使用更少数量的支持向量,从而显著减少输出目标量预测值的计算时间. (3) RVM不需要估计过多的参数. (4) RVM对是否满足Mercer 定理的核函数没有限制,适应性更好. -Relevance Vector Ma
SupportVectorMachinesClassifierBasedonModifyingKer
- 以黎曼几何为理论依据,基于S.Amari的修正核函数思想提出了两种新的保角变换,用其对核函数进行数据依赖性改进,进一步提高支持向量机分类器泛化能力。以人工非线性分类问题 为对象进行研究,仿真实验结果表明采用新保角映射可以快速显著地改善分类器泛化性能,而且能大幅度地减少支持向量的数目。-Two novel conformal transformations were proposed based on the Riemannian geometry theory and S.Amari’sid
Gauss-SVM
- 基于Gauss 核函数SVM分类机,使用二阶几何方法训练。-Gauss kernel function SVM classification based on machine, using the geometric method of second-order training.
SVM
- SVM基础资料,关于核函数的分类及可支持向量机的一些资料-SVM based on information about the kernel function support vector machine classification and may some of the information
SVM_Nonlinear3
- 对“data3.m”数据,用其中一半的数据采用非线性SVM算法设计分类器并画出决策面,另一半数据用于测试分类器性能。采用三套核函数,并且比较不同核函数的结果。-To "data3.m" data, which half of the data using nonlinear SVM classification algorithm design and draw the decision-making surface, the other half of the data used to tes
ProjectPenalty
- 一种无损降维的方法论文,使用投影惩罚和核函数进行分类器的训练选择-A nondestructive method of dimensionality reduction papers, projection punishment and the kernel function classifier training options
test
- 数据挖掘中的数据以及测试数据的程序,可正常进行分类,核函数齐全-Data and test data in the data mining program, normally classified, complete kernel function
fastsvm1
- 机器学习大牛Dale Schuurmans写的多类SVMs的快速实现算法,可以自己修改核函数,通过K-fold cross validation训练得到最优参数,分类效果很好-Machine learning large cattle Dale Schuurmans write multi-class SVMs fast algorithm, can modify the kernel function, the optimal parameters through K-fold cross v
svm-demo
- 一个svm的演示程序,能演示两类数据分类,有gui界面,不使用第三方工具箱,使用gaussian核函数,界面能设置c和gamma的参数值,最后可以得到分类情况的可视化效果。针对svm算法的研究者和用于教学演示的教师,是个不错的源码。-An svm demo program that can demonstrate two types of data classification, gui interface, do not use third-party toolbox, using gauss
imbanlace_kernel
- 基于径向基核函数的不均衡数据集的极限学习机分类源代码-Based on radial basis function unbalanced datasets Extreme Learning Machine classifier source code
elm_kernel
- 不同的核函数的elm,既包括分类算法,也包括回归,十分的全面,运行无错误!-Elm different kernel functions, including both classification algorithms, including regression, very comprehensive and error-free operation!
svm_v251
- 用于模式分类和预测的方法——支持向量机的TOOLBOX的程序,核函数选择为 RBF核函数-Method for pattern classification and prediction- SVM TOOLBOX program, RBF kernel function is selected as the kernel function
SVM
- SVM: 一种分类器,采用最大化分类间隔进行优化参数。 关于这个分类器两点比较重要: 1)SMO优化算法需要掌握, 可以具体参看两篇文章,John Platt的文章 以及“Improvements to Platt s SMO algorithm for SVM Classifier Design” 2)核函数的使用,如何将核函数使用到SVM中,核函数就是空间转换的函数, 说白了就是距离计算函数,如何将同类之间的距离计算的比较近,如何将低维空间转换到易于分类的高维空间
SVM-kernel
- SVM核函数源代码,用matlab语言编写的,适用于分类及相关问题的分析-The SVM kernel function source code, written with matlab language, suitable for classification and analysis of the related problem
SMO_linnerTEST
- SMO算法实现线性分类,别的方法修改核函数即可 亲测有效-SMO algorithm for linear classification, other methods to modify the kernel Effective pro-test
ksvm
- 支持向量机,带核函数的支持向量机的代码实现,在聚类算法中实现非线性分类。-Support vector machine code with kernel function SVM implementation, nonlinear classification clustering algorithm.
SVM
- 支持向量机分类程序,使用高斯核函数,SMO顺序最优化算法,为学习SVM提供参考-SVM program, using a Gaussian kernel, SMO sequence optimization algorithm to provide a reference for learning SVM