搜索资源列表
winep_code
- 这是一个典型的产生式系统的算法题.用的是有界深度优先的递归算法,是用C++Builder4.0写的.这也是人工智能或者程序设计竞赛题中最基本最常用的算法.如果自己动手编程实现了一个这样的题目,那么很多相关的题目也就都一样可以做了,比如"四皇后问题","推箱子问题","传教士和野人问题"等等。 利用深度优先的算法都是不一定能找到最优路径的,而且如果解路径过长的话还可能会搜索失败.如果保证要找到最优路径需要用另一些算法,比如宽度优先算法.无论是哪一种算法,如果问题稍微复杂一点的话,都要解决"
ga-base
- 基本遗传算法的MATLAB编程,未利用MATLAB工具箱,但更能帮助理解遗传算法的基本思想及其核心。-The basic genetic algorithm MATLAB programming, without the use of MATLAB toolbox, but the more help you understand the basic idea of genetic algorithms and its core.
thegeneticalgorithm
- 遗传算法的基本运算过程如下: a)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。 b)个体评价:计算群体P(t)中各个个体的适应度。 c)选择运算:将选择算子作用于群体。选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的。 d)交叉运算;将交叉算子作用于群体。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。遗传算法中起核心作用的就是交叉算
sources
- Core+Python+Programming+2nd+中文版(带书签);Python核心编程中文第二版(带书签)(Core+Python+Programming+2nd)
Python核心编程 第3版 中文版.pdf
- python经典书籍,非常不错的入门教程(Python classic books, very good introductory tutorials)
Deep Learning with Python
- 深度学习基本算法,深度学习with python作为标题建议介绍深度学习使用Python编程语言和开源Keras库,它允许简单快速的原型设计。 在Python深度学习中, 你将从一开始就学习深度学习,你将学习所有关于图像分类模型,如何使用深度学习获取文本和序列,甚至可以学习如何使用神经网络生成文本和图像。 本书是为那些具有Python技能的人员编写的,但你不必在机器学习,Tensorflow或Keras方面有过任何经验。你也不需要先进的数学背景,只有基础的高中水平数学应该让你跟随和理解核心