搜索资源列表
ReviewofSVM-basedControlandOnlineTrainingAlgorithm
- 支持向量机以其模型结构简单、较好的推广能力和全局最优解等特点已经被用来进行智能 控制的研究,主要包括采用支持向量机回归的非线性时间序列的建模与预测、系统辨识等建模方 面的研究以及优化控制、学习控制和预测控制等方面的研究以及采用支持向量机的故障诊断的研 究。由于现有SVMR基于二次规划的优化方法不适合控制过程的在线训练,因此出现了对SVMR 在线训练算法的研究。分析了国内外这些研究内容的最新研究进展,旨在探讨归纳支持向量机在控 制领域研究的主要成果和存在的问题,以便为进一步的研
using-adaptive-chebyshev
- 提出了一种基于自适应 Chebyshev 多项式神经网络(ACNN)的 Logistic 混沌系统控制算法。该算法采用 Chebyshev 正交多项式作为神经网络的激励函数, 构建 Logistic 混沌系统的预测与控制模型。为了保证算法的稳定性, 提出和证明了收敛定 理, 并利用自适应学习率算法提高神经网络的学习效率和收敛速度。通过采用自适应 Chebyshev 神经网络直接学习 Logistic 混 沌系统的动态特性, 并对系统实施目标函数控制。实验仿真结果表明, 该算法在 L
artificial-neural-network
- 人工神经网络是在现代神经科学的基础上提出和发展起来的,旨在反映人脑结构及 功能的一种抽象数学模型。自1943 年美国心理学家W. McCulloch 和数学家W. Pitts 提 出形式神经元的抽象数学模型—MP 模型以来,人工神经网络理论技术经过了50 多年 曲折的发展。特别是20 世纪80 年代,人工神经网络的研究取得了重大进展,有关的理 论和方法已经发展成一门界于物理学、数学、计算机科学和神经生物学之间的交叉学科。 它在模式识别,图像处理,智能控制,组合优化,金融预测与
NPC
- 神经网络预测控制在控制系统中的应用,包括BP算法,模型建立等等 -Neural network predictive control applications in the control system, including the BP algorithm, modeling, etc.
dynamic-path-planning
- (不错的一篇文章,已被EI收录)模型预测控制(model predictive control,MPC)路径规划算法适用于三维动态环境下的无人机(un-manned aerial vehicle,UAV)路径规划;动态贝叶斯网络(dynamic Bayesian network,DBN)能够有效推理战场态势,对无人机进行威胁评估。针对威胁尾随无人机时的路径规划问题,构建 DBN 威胁评估模型,将 UAV 在战场环境中的威胁态势用威胁等级概率表示,与 MPC 路径规划算法相结合,得到基于 DBN
MATLAB simulation.zip
- 第1~5章主要内容为:绪论、系统辨识、模型参考自适应控制、自校正控制(包括广义预测控制)、基于常规控制策略的自校正控制等,每种算法都配有MATLAB仿真程序、仿真结果以及对仿真结果的简要分析;第6章详细介绍了基于可视化编程工具VB和Delphi的系统辨识与自适应控制的仿真技术。(System identification and adaptive control matlab simulation)
AsurveyofindustrialMPC
- 对于近年来在商业领域应用十分广泛的模型预测控制算法的调查(a survey of industrial model predictive control technology)