搜索资源列表
Backpropagation_Stochastic
- 利用随机反向传播网络归类的学习算法。它是LMS算法的自然延伸,也是多层神经网络的有监督训练。-Classify using a backpropagation network with stochastic learning algorithm。
Face-orientation-recognition
- LVQ即学习向量量化神经网络是一种用于训练竞争层的有监督学习方法神经网络,在模式识别和优化领域有着广泛的应用。本课题要求使用LVQ神经网络训练人脸的特征数据,得到模型对任一人脸图像的朝向进行识别。-Learning Vector Quantization LVQ neural network that is used to train competitive layer neural network supervised learning methods in the field of patt
PNN网络代码
- 概率神经网络(Probabilistic Neural Network)是由D.F.Speeht博士在1989年首先提出,是径向基网络的一个分支,属于前馈网络的一种。它具有如下优点:学习过程简单、训练速度快;分类更准确,容错性好等。从本质上说,它属于一种有监督的网络分类器,基于贝叶斯最小风险准则。(Probabilistic neural network was first proposed by Dr. D.F.Speeht in 1989. It is a branch of radial
RocAlphaGo-cython-optimization
- 仿照谷歌alphago原理的围棋程序,目前只有快速走子网络还没有完善好(this is a program according alphago theory)
CNN
- 卷积神经网络分类 调制信号识别 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 [1-2] 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称