搜索资源列表
AI_GA_matlab
- 遗传算法程序 主要程序 ga.m 遗传算法核心程序 BinaryExample.m 二进制编码应用程序 FloatExample.m 浮点编码的应用程序 相关算子及函数 initializega.m 种群初始化函数 simpleXover.m 用于二进制编码的简单交叉算子 arithXover.m 用于浮点编码的算术交叉算子 binaryMutation 用于二进制编码的变异算子 nonMutation.m 用于浮点编码的非均匀变异算子
New_Genetic_Algorithm
- 遗传算法及其育种:GA于20世纪60年代由美国Michigan大学J.H.Holland教授[1]首先提出。它可广泛应用于人工智能、机器学习、函数的优化、自动控制等领域。GA的突出特点是将问题的解空间通过编码转换为GA的搜索空间,把问题的解转换为生物的个体,并借助生物的遗传和进化理论,对多个个体同时进行选择、交叉和变异操作。这样,可以较快地搜索到最优解。但是,遗传算法易陷入局部最优。搜索效率还不是很高。因此,为了克服这些缺点缺点,本文提出了育种算法,可以较好地解决遗传算法的问题。-Genetic