搜索资源列表
GA
- 热力学遗传算"~-(therm odynamical genetic algorithms,简称TDGA)借鉴固体退火过程中能量与熵的竞争 模式来协调GA 中“选择压力”和“种群多样性”之间的冲突.然而TDGA 目前极高的计算代价限制了其应用.为了提 高TDGA的计算效率,首先定义一种等级熵(rating—based entropy,J~j称RE)度量方法,它能以较小的计算成本度量种 群中个体适应值的分散程度.然后引入分量热力学替换规则(component thermod)rnami
squeezeDet-master
- 一种应用于目标检测中同时满足上述所有约束条件的全卷积神经网络结构。在我们的网络中,使用卷积层不只是用来提取特征图,同时也是作为输出层去计算边界框(bounding box)和分类概率。我们模型中的检测管道(detection pipeline)只包含一个神经网络的前向通路,因此它运行起来是极其迅速的。我们的模型是全卷积结构的,因此可以达到小的模型规模和很高的能量利用效率。最后的实验表明我们的模型能达到很高的精度,在 KITTI 基准上达到了最高的精确度。(A fully convoluted n