搜索资源列表
TimeSeriesPredictionUsingSupportVectorRegressionNe
- 为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR—NN)。SVR—NN 用支持向量回归(SVR)方法获得网络的初始结构和权值, 白适应地生 成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点疹教和权 主。 SVR—NN有很 好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的“过拟合,’现象。将SVR—NN 应用到时间序列预测上。结果表明,SVR.NN预测模型能精确地预测混沌时间序列,具有很好的 理论和应用价值。-Ab
ARMA-model
- 模型包括三种基本类型:自 回归模型、移动平均模型和 自回归移动平均模型 -The model consists of three basic types: the regression model, moving average and autoregressive moving average model
RGLS
- 该算法用于自回归输入模型,是一种迭代的算法。其基本思想是基于对数据先进行一次滤波处理,后利用普通最小二乘法对滤波后的数据进行辨识,进而获得无偏一致估计。但是当过程的输出信噪比比较大或模型参数较多时,这种数据白色化处理的可靠性就会下降,辨识结果往往会是有偏估计。数据要充分多,否则辨识精度下降。模型阶次不宜过高。初始值对辨识结果有较大影响。-The algorithm used for autoregressive input model, it is a kind of iterative alg
jumpgarchfun
- 跳跃扩散模型结合条件异方差自回归模型的参数估计-Jump diffusion model combined with conditional heteroskedasticity self-parametric regression models estimate