搜索资源列表
GA
- 经典遗传算法的matlab仿真,遗传算法是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法,其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。-good genetic algorithm matlab code
uchnu
- 包括轨道机动仿真、初轨计算,利用最小二乘法进行拟合多元非线性方程,利用自然梯度算法。- Including orbital maneuvering simulation, initial orbit calculation, Multivariate least squares fitting method of nonlinear equations, Use of natural gradient algorithm.
pjasq
- 利用自然梯度算法,包括AHP,因子分析,回归分析,聚类分析,借鉴了主成分分析算法(PCA)。- Use of natural gradient algorithm, Including AHP, factor analysis, regression analysis, cluster analysis, It draws on principal component analysis algorithm (PCA).
kixmv
- 利用自然梯度算法,阵列信号处理的高分辨率估计,包括面积、周长、矩形度、伸长度。- Use of natural gradient algorithm, High-resolution array signal processing estimates, Including the area, perimeter, rectangular, elongation.
feng_nj53
- 利用自然梯度算法,是国外的成品模型,是学习PCA特征提取的很好的学习资料。- Use of natural gradient algorithm, Foreign model is finished, Is a good learning materials to learn PCA feature extraction.
kbujj
- 利用自然梯度算法,包括脚本文件和函数文件形式,模式识别中的bayes判别分析算法。- Use of natural gradient algorithm, Including scr ipt files and function files in the form, Pattern Recognition bayes discriminant analysis algorithm.
bc616
- 空间目标识别,采用PM算法,利用自然梯度算法,包括 MUSIC算法,ESPRIT算法 ROOT-MUSIC算法。- Space target recognition algorithm using PM, Use of natural gradient algorithm, Including the MUSIC algorithm, ESPRIT algorithm ROOT-MUSIC algorithm.
lenkoupang
- 这是一个好用的频偏估计算法的matlab仿真程序,利用自然梯度算法,有借鉴意义哦。- This is a useful frequency estimation algorithm matlab simulation program, Use of natural gradient algorithm, There are reference Oh.
mm257
- 利用自然梯度算法,阐述了负荷预测的应用研究,在matlab环境中自动识别连通区域的大小。- Use of natural gradient algorithm, It describes the application of load forecasting, Automatic identification in the matlab environment the size of the connected area.
2703
- 搭建OFDM通信系统的框架,利用自然梯度算法,最大似然(ML)准则和最大后验概率(MAP)准则。- Build a framework OFDM communication system, Use of natural gradient algorithm, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion.
sequence_gan
- TensorFlow实现自然语言处理,基于梯度策略算法(Use TensorFlow to deal with the Natural Language Processing)