搜索资源列表
fire
- 模拟退火算法是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。本文给出了该算法的详细介绍和伪代码。-Monte-Carlo simulated annealing algorithm is based on a heuristic iterative method for solving stochastic search process. This paper gives a detailed descr iption of the algorithm and pseudo code.
MonteCarlo-ppt-sample
- 蒙特卡罗(Monte Carlo)方法,又称计算机随机模拟方法,是一种基于"随机数"的计算方法。这一方法源于美国在第二次世界大战研制原子弹的曼哈顿计划。该计划的主持人之一数学家冯诺伊曼用驰名世界的赌城-摩纳哥的Monte Carlo来命名这种方法。-Monte Carlo (Monte Carlo) methods, also known as computer-generated random simulation method is based on " random number&
mnth
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
matlab-accessory_parameter
- lingjian.m-----蒙特卡罗方法 lingjian.m使用零件初始值,用蒙特卡罗方法算出总费用。其中使用了自己编制的正态分布随机数发生器产生正态分布随机数。lingjian.m是对蒙特卡罗方法的一次练习。 accyouhua为标定值的函数,而lingjian不是一个函数,在其中已给出了一组标定值的值。 退火确定标定值/unitanneal()----模拟退火 连续型多个变量组合优化问题 这是对模拟退火方法的一次练习,结果证明模拟退火确实是一