搜索资源列表
支持向量机算法及其代码实现
- 支持向量机(SVM),起初由vapnik提出时,是作为寻求最优(在一定程度上)二分类器的一种技术。後来它又被拓展到回归和聚类应用。SVM是一种基于核函数的方法,它通过某些核函数把特征向量映射到高维空间,然後建立一个线性判别函数(或者说是一个高维空间中的能够区分训练数据的最优超平面,参考异或那个经典例子)。假如SVM没有明确定义核函数,高维空间中任意两点距离就需要定义。
sfrz
- 基于等距映射( ISOMAP) 非线性降维算法, 提出了一种新的基于用户击键特征的用户身份认证算法, 该算法用测地距离代 替传统的欧氏距离, 作为样本向量之间的距离度量, 在用户击键特征向量空间中挖掘嵌入的低维黎曼流形, 进行用户识别。用采集 到的1 500 个击键模式数据进行实验测试, 结果表明, 该文的算法性能优于现有的同类算法, 其错误拒绝率( FRR) 和错误通过率 ( FAR) 分别是1.65 和0 , 低于现有的同类算法。-Based isometric map (ISO