搜索资源列表
a
- 改良遗传算法在图像多阈值分割中的应用-改良遗传算法在图像多阈值分割中的应用
tuxiangyuzhifenge
- 图像阈值分割的方法很多,但目前很难找到适用于各种场合的分割方法。本文针对实际情况对几种分割方法进行了分析比较及实验研究。在此基础上引入了遗传算法,加快了算法的收敛速度。最后将一种改进的遗传算法用于优化图像分割,取得了较好的分割效能。-Image Thresholding methods, but it is difficult to find a suitable segmentation method on various occasions. In this paper, the actua
GA.cpp
- 选择:根据遗传算法的收敛定理,赌轮法(蒙特卡罗法) ,进行个体选择。交叉:交叉互换的重要特征是它能产生不同于父体的子体。交叉概率越大,交叉操作的可能性也越大 如果交叉率太低,收敛速度可能降低。单阈值分割由于只有一个参数,所以采用一点交叉,在此设置交叉概率为0.65。变异:变异概率为0.01 。-This is a simple genetic algorithm implementation where the evaluation function takes positive values
GA_KSW
- 基于遗传算法的直方图最佳熵法阈值分割方法,缩短了寻找最佳阈值的时间。-KSW entropie thresholding segmentation method based on genetic alogrithm
segmentation
- 遗传算法在道路图像阈值分割中的应用 包括:初始化种群,产生新一代个体,精英选择,交叉,变异-Genetic algorithm in the road image threshold segmentation include: initial population, a new generation of individual, elite selection, crossover and mutation
Otsu(GA)
- 应用遗传算法对传统Otsu算法进行优化实现灰度图像的阈值分割。给出了c++的源程序。-Using genetic algorithm Otsu traditional algorithm was used to optimize the realization of gray image threshold segmentation. Given the c++ the source program.
Threshold-Image-Segmentation
- 一种最新的基于遗传算法的阈值分割方法!在图像处理中可以参考,有价值!-One of the latest genetic algorithm-based threshold segmentation method. Can refer to the image processing and valuable!
GA3threshold
- 针对Bmp图片,采用多阈值最大化图像的信息熵为目标,采用多目标遗传算法(源码全)对图像进行多阈值变换,实现对图像的多阈值分割。(VC6.0实现)-Bmp images using multi-threshold image information entropy maximization as the goal, the use of multi-objective genetic algorithm (source full) image multi-threshold transform,
GA1threshold
- 针对Bmp图片,根据以最大图像的信息熵为目标,采用遗传算法(源码全)对图像进行单阈值变换,实现对图像的阈值分割。(VC6.0实现)-Bmp picture, according to the target maximum image information entropy, genetic algorithm (source all) single threshold transform image threshold segmentation of images. (VC6.0 achieve
segment
- 基于改进型遗传算法的图像最佳熵阈值分割方法,完美运行,无BUG-Best Entropy-based image thresholding method improved genetic algorithm