搜索资源列表
遗传算法c++程序
- 首先采用某种编码方式将解空间映射到编码空间,每个编码对应问题的一个解,称为染色体或个体。一般通过随机方法确定起始的一群个体,称为种群,在种群中根据适应值或某种竞争机制选择个体,使用各种遗传操作算子产生下一代如此进化下去,直到满足期望的终止条件。-begin using some form of coding mapping to the solution space coding space, each encoding a corresponding solution to the probl
改进遗传算法-郭涛算法做最优化问题很管用
- 改进遗传算法-郭涛算法做最优化问题很管用,算法的基本思想是 先任意产生n个随机数,然后从n个数里随机选择m个数,再有这m个 数合成一个新数,将这个新数同n个数中间适应值函数值的最差的比较, 如果好的话就取代最差的那个,如果它比最好的还要好的话,则把最好的 也取代。如果比最差的坏,则重新合成一个新数。依次循环下去。 程序的奇妙之处是GA_crossover()函数,产生的新数确实比较好,看看 那位大侠能改进一下,产生比这跟好的数。-improved genetic algo
广义异或bp算法
- 本文件为用C语言实现的可实现广义异或问题的bp神经网络算法。该问题是对标准异或问题的推广。在标准异或问题中,输入X1和X2取离散量-1或+1,在广义异或问题中,输入(X1,X2)可以在区间[-1,+1] X [-1, +1]内任意取值,而输出为Y=sign(x1,x2),其中sign()为符号函数,在区间[-1,+1] X [-1, +1]内随机产生500个训练样本.本程序用标准BP网实现该分类问题.-this document for the use of C language of achi
Hermit多项式在线学习ran算法
- 本程序用资源分配网(Resource_Allocation Network,简称RAN)实现了Hermit多项式在线学习问题。训练样本产生方式如下,样本数400,每个样本输入Xi在区间[-4,4]内随机产生(均匀分布),相关样本输出为F(Xi) = 1.1(1-Xi + Xi2)exp(-Xi2/2),测试样本输入在[-4,+4]内以0.04为间隔等距产生,共201个样本。训练结束后的隐节点为:11个,训练结束后的平均误差可达:0.03 -this program resources dis
c语音遗传算法程序包
- 遗传算法原程序,并行算法,原代码,随机搜索算法-GA original program, parallel algorithm, the original code, random search algorithm
遗传算法实现旅行商问题
- 本算法中采取了种群规模为100,同时采用轮盘赌来获取种群。开始使用随机的方法得到初始的种群-the algorithm adopted a population size of 100, using roulette to access populations. Using the stochastic method initial Stocks
差别算法matlab源码
- 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation).源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应
Matlab遗传算法改进程序
- 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算
AntCluster.rar
- 蚁群算法,可生成随机生成的图像和聚类图像。,Ant colony algorithm
GA
- matlab编写的遗传算法优化程序,采用随机配对交叉,多点交叉,两点交叉,编译对目标函数进行优化-matlab genetic algorithm to optimize the preparation procedures, using a random cross-matching, multi-point crossover, two cross-cutting, the compiler of the objective function to optimize
PSO_C++
- 一个很好的学习粒子群算法的例子。(刘康C++版本) 程序介绍: 模拟一群鸟捕食的情景,从而达到优化目标函数的目的,这就是粒子群算法!起初在可行的空间中随机的产生一群粒子,然后让每个粒子开始在虚拟的空间中向四面八方飞翔,并且每个粒子都记下他们飞过的适应值(也就是目标优化函数)最高的点,而且整个粒子群有一个最高适应值个体,这样,粒子在飞翔的时候尽量朝向自己曾飞过的最好的点和集体的最好的点。最后达到收敛到近似最优点的目的。 备注:目标优化函数程序中已经内定了,f6 ={0.
DifferentialEvolutionAPracticalApproachtoGlobalOpt
- 这是一本讲微分进化的书,进化算法是以遗传算法为代表的一类随机算法的总称,95年由Rainer Storn和Kenneth Prici提出微分进化方法,比传统进化算法更好更简单,2004年该方法的原创者出版了长达580页的微分进化:一种全局优化的实用方法,本书是英文版,似乎还没有中文版,希望对感兴趣的人有用-This is a book stresses differential evolution, evolutionary algorithm based on genetic algorith
TSP
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,
psoandimprovedpso
- 基本粒子群优化算法和改进粒子群优化算法程序,包括:用基本粒子群算法求解无约束优化问题,用带压缩因子的粒子群算法求解无约束优化问题,用线性递减权重粒子群优化算法求解无约束优化问题,用自适应权重粒子群优化算法求解无约束优化问题,用随机权重粒子群优化算法求解无约束优化问题,用学习因子同步变化的粒子群优化算法求解无约束优化问题,用学习因子异步变化的粒子群优化算法求解无约束优化问题,用二阶粒子群优化算法求解无约束优化问题,用二阶振荡粒子群优化算法求解无约束优化问题,用混沌粒子群优化算法求解无约束优化问题,
mnth
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
基于人工鱼群算法的一元非线性函数寻优
- 人工鱼群算法是受鱼群行为的启发,由李晓磊等人于2002年提出的一种基于动物行为的群体智能优化算法。在一片水域中,鱼往往能自行或尾随其它鱼,找到营养物质最多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最丰富的地方。人工鱼群算法根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群、追尾、随机行为,从而实现寻优。本代码是基于人工鱼群算法的一元非线性函数寻优。
遗传算法
- 遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过
遗传算法
- 遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统上,解用二进制表示(即0和1的串),但也可以用其他表示方法。进化从完全随机个体的种群开始,之后一代一代发生。在每一代中,整个种群的适应度被评价,从当前种群中随机地选择多个个体(基于它们的适应度),通过
随机森林算法分类、回归
- 随机森林分类器,matlab写的,直接可以运行,不需要该任何东西,详细看readme和案例。-Random Forest classifier, matlab write, direct run, does not require that anything
粒子群算法
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"