搜索资源列表
差别算法matlab源码
- 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation).源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应
Backpropagation_Stochastic
- 利用随机反向传播网络归类的学习算法。它是LMS算法的自然延伸,也是多层神经网络的有监督训练。-Classify using a backpropagation network with stochastic learning algorithm。
ann
- 具有随机噪声的二阶系统的神经网络识别及其matlab实现-Artificial neural network
Artificialneuralnetworkandsimulation
- 内容包括:人工神经网络简介、单层前向网络及LMS学习算法、多层前向网络及BP学习算法、支持向录机及其学习算法、Hopfield 神经网络,随机神经网络及模拟退火算法、竟争神经网络和协同神纤网络。每章均给出了基于MATLAB的仿真实例以及练习。 -Contents include: Introduction to artificial neural networks, single-layer feedforward network and the LMS learning algorit
complex-network
- 采用随机图生成无标度网络的算法,返回值是无标度网络的的连接矩阵和度分布,比较实用。把代码拷贝到matlab环境下就可以用。-Using an algorithm to generate random graph scale-free networks, the return value is the connection matrix and the degree of scale-free networks of distribution, more practical.
stochastic_neuralnetworks
- 随机神经网络传播法的matlab算法,写的很详细,对初学者有很大的帮助 -matlab code for stochastic_network neuralnetworks,detail and helpful to freshman
random-nerve
- 《MATLAB神经网络原理与实例精解》一书配套的随机神经网络程序示例,含有完整注释。-Network Program Example MATLAB network principles and examples of fine nerve Solutions, a book supporting random nerve, contains the complete comment.
neural-network-
- matlab里面神经网络工具箱的例子锦集,主要包括了bp神经网络,随机神经网络、自组织竞争神经网络、径向基函数网络。-Inside matlab neural network toolbox Jinji examples, including the bp neural networks, Stochastic neural networks, since neural network, radial basis function network organization competition
Neural-Network
- 神经网络去噪+matlab程序+神经网络去除随机脉冲干扰-Neural network neural network denoising+matlab program+ removing random pulse interference
several-classification-algorithm
- 几种基于Matlab的分类算法研究(自组织神经网络,SOM神经网络,LVQ神经网络,决策树,随机森林算法)-Several classification algorithm based on Matlab research (self-organizing neural network, SOM neural network and LVQ neural network, decision tree, the random forest algorithm)
Class_3_Code
- 将concrete_data.mat文件导入到MATLAB中,其中attributes为影响混凝土抗压强度的7个输入变量,strength为混凝土的抗压强度,即输出变量; 将整个数据集中的103个样本随机划分为训练集与测试集,其中训练集包含80个样本,测试集包含23个样本; 将训练集与测试集数据进行归一化; 建立BP神经网络,并训练; 利用训练好的BP神经网络对测试集中的23个样本的抗压强度进行预测; 输出结果并绘图(真实值与预测值对比图)(The concrete_data.mat
rbf
- 自己编写RBF神经网络程序,RBF神经网络隐层采用标准Gaussian径向基函数,输出层采用线性激活函数,其中数据中心、扩展常数和输出权值均用梯度法求解,它们的学习率均为0.001。其中隐节点数选为10,初始输出权值取[-0.1,0.1]内的随机值,初始数据中心取[-1,1]内的随机值,初始扩展常数取[0.1,0.3]内的随机值,输入采用[0 1]的随机阶跃输入(Write your own RBF neural network, RBF neural network hidden layer
5
- 本程序论述在MATLAB环境下如何实现神经网络,包括了常用的神经网络及相关理论,如BP神经 网络、RBF神经网络、SVM、SOM神经网络、灰色神经网络、决策树、随机森林、小波神经网络、NARX神经网络等以及各种优化算法与神经网络的结合。(This procedure describes how to realize neural network in MATLAB environment, including the commonly used neural network and relate
1
- 本程序论述在MATLAB环境下如何实现神经网络,包括了常用的神经网络及相关理论,如BP神经 网络、RBF神经网络、SVM、SOM神经网络、灰色神经网络、随机森林、小波神经网络、NARX神经网络等以及各种优化算法与神经网络的结合。(This procedure describes how to realize neural network in MATLAB environment, including the commonly used neural network and related th
som
- 随机产生5类二维坐标系中的数,使用SOM网络进行无监督聚类,将产生的随机数自动聚成五类,并将结果用图像直接显示出来,生成训练好的网络权值(Five kinds of random numbers in two-dimensional coordinate system are generated randomly, and unsupervised clustering is carried out using SOM network. The random numbers generated
CNN_matlab
- 使用matlab2019a深度学习工具箱实现的CNN卷积神经网络分类例程,数据是随机生成的一维随机数(Using the CNN convolution neural network classification routine realized by MATLAB 2019a deep learning toolbox, the data is one-dimensional random number generated randomly)