搜索资源列表
coforest
- CoForest是一种半监督算法,处理集成学习及利用大量未标记数据得到更优越性能的假设。-CoForest is a semi-supervised algorithm, which exploits the power of ensemble learning and large amount of unlabeled data available to produce hypothesis with better performance.
boost
- boost算法,用于数据模式分析,其原理是机器学习里面的元学习器集成思想,通过弱分类器的集成来实现一个强分类器。-for data pattern analysis.
the_application_of_Boosting
- 集成 学 习 算法通过训练多个弱学习算法并将其结论进行合成,可以显著地提 高学习系统的泛化能力。Boosting算法作为集成学习算法的主要代表算法,得到 了广泛的研究和应用,但其研究成果大部分都集中的分类问题上。-Integrated learning algorithm through the training of more than a weak learning algorithm and its conclusions synthesis, can significantly
OCD--code
- 通过对集成误差公式的理论分析,提出了一种能主动引导个体网络进行差异性学习的集成网络学习算法。该方法通过对集成误差的分解,使个体网络的训练准则函数中包含个体网络误差相关度的因素,并通过协同训练,引导个体网络进行差异性学习。该方法在基于油气分析的变压器故障诊断的实验结果表明,该方法的故障诊断准确率优于传统的三比值法与BP神经网络,其性能也比经典的集成方法Bagging和Boosting方法更稳定可靠。-A learning algorithm is proposed in this paper by
ADL-code
- 通过对集成误差公式的理论分析,提出了一种能主动引导个体网络进行差异性学习的集成网络学习算法。该方法通过对集成误差的分解,使个体网络的训练准则函数中包含个体网络误差相关度的因素,并通过协同训练,引导个体网络进行差异性学习。该方法在基于油气分析的变压器故障诊断的实验结果表明,该方法的故障诊断准确率优于传统的三比值法与BP神经网络,其性能也比经典的集成方法Bagging和Boosting方法更稳定可靠。-A learning algorithm is proposed in this paper by
multi-class-problem
- 将多类别问题分解成多个二类别问题是解决多类别分类问题的常用方式。传统one against all(OAA)分解方式的性能更多的依赖于个体分类器的精度,而不是它的差异性。本文介绍一种基于集成学习的适于多类问题的神经网络集成模型,其基本模块由一个OAA方式的二类别分类器和一个补充多类分类器组成。测试表明,该模型在多类问题上比其他经典集成算法有着更高的精度,并且有较少存储空间和计算时间的优势。-Decompose multi-class problem into multiple binary cl
UDEED
- 在集成学习中用UDEED算法来处理非平稳动态数据流中的分类,关于整体学习算法很有帮助,集成学习可以提高机器学习的推广!-In integrated learning using UDEED algorithm to handle the nonstationary dynamic data stream classification, machine learning promote integrated learning can improve the overall learning alg
miltool
- 多示例学习的算法集合,集成了各种主流设计算法-An ensemble of the typical multiple-instance learning algorithms
Adaboost
- 这是一个集成学习Adaboost算法希望能够帮助您,里面有成功运行的例子-This is an Adaboost algorithm
robustlssvm
- 鲁棒最小二乘双支持向量机集成学习算法,对于初学者的理解应用特别好用-Robust least squares double support vector machine ensemble learning algorithm for beginners to understand the application of special good use
Ensemble-Learning
- 集成学习将若干基分类器的预测结果进行综合,具体包括Bagging算法和AdaBoost算法;还有随机森林算法,利用多棵树对样本进行训练并预测的一种分类器-Integrated learning integrates the prediction results of several base classifiers, including Bagging algorithm and AdaBoost algorithm and random forest algorithm, using a t
MLInActionCode-master
- 机器学习实战的源代码集合,第一部分主要介绍机器学习基础,以及如何利用算法进行分类,并逐步介绍了多种经典的监督学习算法,如k近邻算法、朴素贝叶斯算法、Logistic回归算法、支持向量机、AdaBoost集成方法、基于树的回归算法和分类回归树(CART)算法等。第三部分则重点介绍无监督学习及其一些主要算法:k均值聚类算法、Apriori算法、FP-Growth算法。第四部分介绍了机器学习算法的一些附属工具(Machine learning combat source code collection
0251461
- 集成地图的编程方法,地图算法中使用, 很有价值的参考,()