搜索资源列表
ReviewofSVM-basedControlandOnlineTrainingAlgorithm
- 支持向量机以其模型结构简单、较好的推广能力和全局最优解等特点已经被用来进行智能 控制的研究,主要包括采用支持向量机回归的非线性时间序列的建模与预测、系统辨识等建模方 面的研究以及优化控制、学习控制和预测控制等方面的研究以及采用支持向量机的故障诊断的研 究。由于现有SVMR基于二次规划的优化方法不适合控制过程的在线训练,因此出现了对SVMR 在线训练算法的研究。分析了国内外这些研究内容的最新研究进展,旨在探讨归纳支持向量机在控 制领域研究的主要成果和存在的问题,以便为进一步的研
Approximate-Entropy-matlab
- 近似熵是系统复杂性测度很有效的一种方法,在医学、机械设备故障的诊断等方面得到广泛应用。近似熵复杂性测度具有计算简便,对时间序列长度等条件要求相对较低等优点,因而更具有实用价值,是水文非线性系统领域中的新型工具。-Approximate entropy is a measure of system complexity, a very effective way, in medicine, the diagnosis of mechanical equipment failures, etc. a
pso-bp
- BP神经网络具有较强的非线性问题处理能力 是目前一 种 较 好 的 用 于 时 间 序 列 预 测 的 方 法 然 而 它 存 在 易 于 陷 入 局 部 极 小,针对地震预测的应用,用改进粒子群优化的BP算法对四川地区最大震级时间序列进行预测,通过训练 预 测 次 年 的 最 大 震 级 结 果,表明此方法优于未经优化的 BP算法具有良好的预测效果 -BP neural network has a strong nonlinear problems processing power is a
NARX
- 利用非线性神经网络做时间序列预测,主要是做动态预测。-Time series prediction using nonlinear neural network, mainly to do dynamic prediction.
RBF遗传优化
- RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。(RBF network can approximate any nonlinear function, regularity can handle within the system to parse, has good generalization ability and
Untitled2
- k—means函数,RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。(k-means function, RBF network can approximate any non-linear function, can deal with difficult-to-resolve regularity in the sys