搜索资源列表
ReviewofSVM-basedControlandOnlineTrainingAlgorithm
- 支持向量机以其模型结构简单、较好的推广能力和全局最优解等特点已经被用来进行智能 控制的研究,主要包括采用支持向量机回归的非线性时间序列的建模与预测、系统辨识等建模方 面的研究以及优化控制、学习控制和预测控制等方面的研究以及采用支持向量机的故障诊断的研 究。由于现有SVMR基于二次规划的优化方法不适合控制过程的在线训练,因此出现了对SVMR 在线训练算法的研究。分析了国内外这些研究内容的最新研究进展,旨在探讨归纳支持向量机在控 制领域研究的主要成果和存在的问题,以便为进一步的研
article.pdf
- 非线性最优控制系统保辛摄动近似求解论文 介绍了最优控制系统保辛摄动求解方法-nonlinear optimal control
RBF
- 运用常规的PID控制算法很难达到人们所要求的控制效果。采用改进的BP神经网络算法进行改进具有以任意精度逼近非线性函数的能力,而且通过它的自身的学习,可以找到某一最优控制率下的PID控制器参数,使其具有更好的鲁棒性和自适应的能力。-Using conventional PID control algorithm is difficult to live up to the required control effect. The improved BP neural network algorit
chap9_3
- 关于二次型神经网络,将最优控制与非线性神经网络相结合-Quadratic neural network, optimal control and nonlinear neural network combining
introduction-of-adp
- 自适应动态规划介绍。一种求解动态规划方法HJB方程的自学习控制算法,称其为自适应动态规划算法。所提的算法可以用来解决未知离散时间非线性系统的最优控制问题,同时给出了该控制算法的收敛性证明。算法的实现用到了三个神经网络,在递推的每一步分别用来近似性能指标函数、最优控制律和未知非线性系统。-Adaptive Dynamic Programming introduction. Dynamic programming method for solving the HJB equation self-le