搜索资源列表
自适应(Adaptive)神经网络源程序
- 自适应(Adaptive)神经网络源程序 The adaptive Neural Network Library is a collection of blocks that implement several Adaptive Neural Networks featuring different adaptation algorithms.~..~ There are 11 blocks that implement basically these 5 kinds of
Adaptive
- The adaptive Neural Network Library is a collection of blocks that implement several Adaptive Neural Networks featuring different adaptation algorithms.~..~ There are 11 blocks that implement basically these 5 kinds of neural networks: 1) A
ANN-adaptive-whu
- 人工神经网络感知器源码,方便了初学者试验模拟,让初学者初步认识神经网络的应用价值-ANN perceptron source and make it easier for the beginners test simulation Let beginners preliminary understanding of the neural network application
BParithmetic
- 神经网络五层自适应BP算法,能在VC6.0下调试通过-five-story adaptive neural network algorithm BP, in debugging through VC6.0
自适应神经网络在确定落煤残存瓦斯量中的应用
- 落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因素呈非线性关系。人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法。基于此,作者提出自适应神经网络的落煤残存瓦斯量预测模型,并结合不同矿井落煤残存瓦斯量的实际测定结果进行验证研究。结果表明,自适应调整权值的变步长BP神经网络模型预测精度高,收敛速度快 该预测模型的应用可为采掘工作面瓦斯涌
a-new-neural-RA-on-WSN
- 无线传感器网络中一种新的基于神经网络的自适应路由算法-Wireless sensor networks, a new neural network based adaptive routing algorithm
ART1
- Adaptive Resonance Theory Brain Modeling 人工智能人工神经网络源码-Adaptive Resonance Theory Brain Modeling artificial neural network artificial intelligence source
fsfxx
- 本文主要研究利用神经网络进行非线性辨识及自适应控制。 -This paper studied the feasibility of using neural network nonlinear identification and adaptive control.
zishiyinggongzhen
- 自适应神经网络的一个应用示例,希望对学习这方面的朋友有用-An adaptive neural network application example, and they hope to learn from a friend useful in this regard
75448181BP
- 故障诊断 基于BP神经网络的故障诊断系统 1生成BP网络2.训练和自适应调整-Fault diagnosis based on BP neural network fault diagnosis system for a generation of BP network 2. Training and adaptive adjustment
NeuralNetworks
- Neural Networks at your Fingertips.rar =============== Network: Adaline Network =============== Application: Pattern Recognition Classification of Digits 0-9 Author: Karsten Kutza Date: 15.4.96 Reference: B. Widrow, M
DSLCGJX2CS
- 神经网络楼层杆件识别程序,采用的是自适应学习速率的BP算法-Neural Networks floor bar identification procedures are used in adaptive learning rate BP algorithm
CHAPTER4
- 本文讨论了神经网络PID控制策略,提出了一种单神经元自适应PID控制器,给出了控制模型,探讨了单神经元自适应PID控制学习算法,通过修改神经元控制器连接加权系数 ,构成了自适应PID控制器。利用神经网络的自学习能力进行PID控制参数的在线整定,并使用了MATLAB软件进行了仿真研究。比较传统PID控制器与单神经元自适应PID控制器两者的仿真结果表明,神经网络PID控制器参数调节简单,具有很高的精度和很强的适应性,可以获得满意的控制效果。-This paper discusses the nerv
CHAP4_4
- 主要是介绍RBF神经网络与PID控制相结合的自适应控制-Mainly to introduce RBF neural network and PID control of a combination of adaptive control
chap4_5
- 基于RBF神经网络辨识的单神经元PID模型参考自适应控制-RBF neural network-based identification of single neuron PID model reference adaptive control
ann
- 自适应神经网络的源代码 Adaptive Neural Networks 自适应神经网络是实现神经网络自适应算法的集合-Adaptive neural network source code Adaptive Neural Networks Adaptive neural network is to achieve a collection of neural network adaptive algorithm
art1s
- Adaptive Resonance Theory (ART) Neural Network
TimeSeriesPredictionUsingSupportVectorRegressionNe
- 为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR—NN)。SVR—NN 用支持向量回归(SVR)方法获得网络的初始结构和权值, 白适应地生 成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点疹教和权 主。 SVR—NN有很 好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的“过拟合,’现象。将SVR—NN 应用到时间序列预测上。结果表明,SVR.NN预测模型能精确地预测混沌时间序列,具有很好的 理论和应用价值。-Ab
The-adaptive-Neural-Network-
- 基本上实现这些类型的神经网络: 自适应线性网络(ADALINE) 多层多层感知器网络 广义径向基函数网络 动态细胞结构(DCS)网络与高斯或圆锥形的基础功能-There are blocks that implement basically these kinds of neural networks: Adaptive Linear Networks (ADALINE) Multilayer Layer Perceptron Networks Generalized
Neural-Network-Noise-Cancellation
- ,自适应神经网络噪声抵消系统不需要关于输入信号的先验知识,非线性映射能力强,具有自学习能力、计算量小和实时性好等特点,利用该系统对含噪声的非线性信号建模,可达到消除噪声的目的。-The adaptive neural network noise canceling system does not need prior knowledge about the input signal, strong nonlinear mapping ability, self-learning ability,