搜索资源列表
libsvm-mat-2[1].89-3
- svm多分类器,包括多分类和GA算法和PSO算法优化的SVM-svm multi-classifier, including the multi-classification and GA algorithm and PSO algorithm for optimization of SVM
libsvm-2.89
- 是一種線性方成的分類器。SVM透過統計的方式將雜亂的資料以NN的方式分成兩類,以便處理。LIBLINEAR is a linear classifier for data with millions of instances and features. It supports L2-regularized logistic regression (LR), L2-loss linear SVM, and L1-loss linear SVM. -Main features of LIBLINEA
demosvm
- matlab编写的svm实现多类分类的源代码,训练算法包括OAA算法、OAO 算法、BSVM2算法等。-matlab prepared svm multi-category classification of the source code, training algorithms, including OAA algorithm, OAO algorithm, BSVM2 algorithm.
svm-light
- svm分类的算法 速度比其他的快一点 需要再做比较 交流 希望能得到更多的资料-SVMmulticlass uses the multi-class formulation described in [1], but optimizes it with an algorithm that is very fast in the linear case
multiClass_svm
- 一个svm(向量机)分类算法本质上是二类分类器代码,实现多类分类的方法一般是将多类分类看作是多个一对多的二类分类器。本程序源码就是一种基于svmlight的svm多类分类器实现。对分类感兴趣的用户请参照。-A svm (vector machine) classification algorithm is essentially a second-class classification code, multi-class classification methods are generally
SVM
- C++实现的SVM程序,可以进行多类分类。-C++ implementation of the SVM procedure, can be multi-class classification.
Recognition-activities-using-SVM
- 利用Support Vector Machine來處理對影像辨識,能判斷影像所傑取到的人是處於何種動作之下,最後並比較多種分類器之結果-Recognition of human activities using SVM multi-class classifi er,including used o-v-o,o-v-a,DAGSVM and SVM-BTA to compare.
credit-rating-using-multi-class-SVM
- 一個基於多類支援向量機的應用,將支向機應用在企業之信用評比上,能使企業得知自身所具有之優勢與劣勢,藉由改善不足之處來提升企業本身信用。-A corporate credit rating model using multi-class support vector machines to do more effective actions in performance
Multi-class-SVM-Image-Classification
- 基于神经网络的遥感图像分类取得了较好的效果,但存在固有的过学习、易陷入局部极小等缺点.支持向量机机器学习方法,根据结构风险最小化(SRM)原理,表现出很多优于其他传统方法的性能,本研究的基于多类支持向量机分类器的遥感图像分类取得了达95.4 的分类精度.但由于遥感图像分类类别多,所需训练样本较大,人工选择效率较低,为此提出以人工选择初始聚类质心、C均值模糊聚类算法自动标注训练样本的基于多类支持向量机的半监督式遥感图像分类方法,期望能在获得适用的分类精度的基础上有效提高分类效率-Neural ne
Classification_LS_SVMlab
- 基于SVM的分类器 支持两类分类 和多类分类选择最优参数-SVM-based classifier supports two types of classification and multi-class classification
Classification_OSU_SVM
- 基于SVM的分类器 支持两类分类 和多类分类-SVM-based classifier supports two types of classification and multi-class classification
Classification_SVM_SteveGunn
- 基于SVM的分类器 支持两类分类 和多类分类 选择最优参数 -Select the optimal parameters of the classifier based on SVM supports two types of classification and multi-class classification
Regression_LS_SVMlab
- 基于SVM的分类器 支持两类分类 和多类分类 选择最优参数-Select the optimal parameters of the classifier based on SVM supports two types of classification and multi-class classification
Regression_SVM_SteveGunn
- 基于SVM的分类器 支持两类分类 和多类分类 选择最优参数-Select the optimal parameters of the classifier based on SVM supports two types of classification and multi-class classification
libsvm-3.1
- LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification. Since version 2.8, it implements an SMO-ty
libsvm-3.22
- libsvm-3.22.rar LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification. Since version 2.8, it impl
bsvm-2.08
- BSVM解决了支持向量机(SVM),用于解决大型分类和回归问题。 它包括以下方法 一个对一个使用约束约束公式的多类分类 通过解决单一优化问题(再次,有界公式)进行多类分类。 参见我们比较文件的第3节。 使用Crammer和Singer的配方进行多级分类。 参见我们的比较文章第4节。 使用约束约束公式的回归-BSVM solves support vector machines (SVM) for the solution of large classification and r