搜索资源列表
clustering
- 一个聚类算法用K-mean处理后迭代,论文发表在PAK
K-MEANS
- k-mean算法的源码,对聚类非常有用!!可以直接使用!
Kmean
- 神经网络中的K-MEAN聚类算法,并在MFC中以主观形式显示学习过程。
GCluser
- 分级聚类算法:包括k-mean max-dist min-dist 程序使用方法: 程序中打开文件“.dat”-》选择聚类方法-》显示数据 .dat文件格式: 分成几类 输入样本维数 样本个数 下面依次为样本特征向量
k-mean
- K-means聚类算法的java实现描述!有详尽的说明,对初学者非常有用!
cluster-2.9
- ClustanGraphics聚类分析工具。提供了11种聚类算法。 Single Linkage (or Minimum Method, Nearest Neighbor) Complete Linkage (or Maximum Method, Furthest Neighbor) Average Linkage (UPGMA) Weighted Average Linkage (WPGMA) Mean Proximity Centroid (UPGMC)
KMEANS
- K-Mean聚类算法,对各种格式的图像进行分层聚类。-This is a K-Mean culstering aligroam.
K-Means
- 这是K-neans动态聚类算法的源程序,是人工智能领域很有用的一种聚类方法。-This is K-neans source dynamic clustering algorithm, the field of artificial intelligence are useful in a clustering method.
textclusterr
- 文档分类,用K均值,加入了K的选择算法,不用人为设定聚类个数-Document classification, using K-means, joined the K of the selection algorithm, not the number of artificial clustering
k_means_cluster
- k均值聚类算法 ,c语言实现 了基于均值的聚类分析,同时增加了多维向量分析功能,使得聚类的收敛速度更快。-k means clustering algorithm, c language implemented based on the mean cluster analysis, while increasing the multi-dimensional vector analysis functions, making the convergence faster clustering.
K-means
- 均值为K的聚类算法,是一种对聚类数据进行的最简单的算法,广泛应用在各种场合中。-K mean clustering algorithm for clustering data is the most simple algorithm, widely used in various occasions.
k_means_JIT
- k-mean聚类算法的MATLAB源代码程序-k-mean clustering algorithm Source code realization in MATLAB
Cpp1
- 距离与相异度,然后介绍一种常见的聚类算法——k均值和k中心点聚类-Distance and dissimilarity, and then introduce a clustering algorithm- k mean and k-medoids clustering
amend1
- 用C语言实现的K均值聚类算法,一共有3个类,并且给出了150个样本点,样本点为四维数据-Those files implements the function of classifying the four dimensional data by using the K-mean algorithm.
K-Mean
- Kmeans 聚类算法的实现 测试, 内部包含 Kmode选项-Implementation of Kmeans cluster algorithm and testing, internal options include Kmode
kjunzhi
- 利用k均值算法将两个female和male包含身高与体重的100个样本进行类别数为2的聚类-Using the K mean algorithm, 100 female and male were clustered with two samples of height and weight for 2 of the clusters.
K-mean
- 聚类算法中的k-means算法,和k-medoids 肯定是非常相似的。k-medoids 和 k-means 不一样的地方在于中心点的选取,在 k-means 中,我们将中心点取为当前 cluster 中所有数据点的平均值。-Clustering algorithm k-means algorithm, and k-medoids certainly very similar. k-medoids and k-means not the same place that the center o
EM
- EM 算法,先K-mean 聚类,然后LGB分裂-EM algorithm, the first K-mean clustering, then LGB split
RBF-k均值聚类
- RBF(径向基神经网络)网络是一种重要的神经网络,RBF网络的训练分为两步,第一步是通过聚类算法得到初始的权值,第二步是根据训练数据训练网络的权值。RBF权值的初始聚类方法较为复杂,比较简单的有K均值聚类,复杂的有遗传聚类,蚁群聚类等,这个RBF网络的程序是基于K均值聚类的RBF代码。(RBF (radial basis function network) is an important neural network. The training of RBF network is divided