搜索资源列表
-
1下载:
改进遗传算法-郭涛算法做最优化问题很管用,算法的基本思想是
先任意产生n个随机数,然后从n个数里随机选择m个数,再有这m个
数合成一个新数,将这个新数同n个数中间适应值函数值的最差的比较,
如果好的话就取代最差的那个,如果它比最好的还要好的话,则把最好的
也取代。如果比最差的坏,则重新合成一个新数。依次循环下去。
程序的奇妙之处是GA_crossover()函数,产生的新数确实比较好,看看
那位大侠能改进一下,产生比这跟好的数。-improved genetic algo
-
-
0下载:
简单一元函数优化实例,利用遗传算法计算下面函数的最大值-One dollar a simple example of function optimization using genetic algorithm function below the maximum
-
-
1下载:
本算法是一种标准遗传算法,应用于函数优化,性能较好。-The algorithm is a standard genetic algorithm, applied to function optimization, performance better.
-
-
0下载:
使用Visual C++ 2003编写的遗传算法库,具有详细的说明文档,使用接口函数传入相关适应度函数与基因个数、迭代次数相关信息,进行目标优化,使用类模板的形式支持函数并行化-Using Visual C++ 2003 prepared by the genetic algorithm library, a detailed descr iption of the document, use the interface function is passed the fitness functi
-
-
0下载:
This a demonstration of how to find a minimum of a non-smooth
objective function using the Genetic Algorithm (GA) function in the
Genetic Algorithm and Direct Search Toolbox. Traditional derivative-based
optimization methods, like those foun
-
-
0下载:
模型利用协商历史中隐含的信息自动对数据进行标注以形成训练样本,用最小二乘支持向量回
归机学习此样本得到对手效用函数的估计,然后结合自己和对手的效用函数构成一个约束优化问题,用遗传算法求
解此优化问题,得到的最优解就是己方的反建议.实验结果表明,在信息保密和没有先验知识的条件下,此模型仍然
表现出较高的效率和效用-The proposed model labels the negotiation history data automatically by making full use
-
-
0下载:
人工神经网络(Artificial Neural Network)是从生理角度对智能的模拟,具有极
高的学习能力和自适应能力,能够以任意精度逼近任意函数,完成对系统的仿真;
而遗传算法是对自然界生物进化过程的模拟,具有极强的全局寻优能力,这两种
算法都是当下研究较多的智能方法。将这两种方法与常规的 PID 控制相结合,
构成智能 PID 控制器,使其具有参数自整定、自适应的能力,以适应复杂环境
下的控制要求,这一思路对提高控制效果具有很好的现实意义。
-Artificia
-
-
0下载:
粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究。
PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。
同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练
-
-
0下载:
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。
-In artificial intellig
-
-
1下载:
遗传算法虽然全局搜索能力较强,但是局部搜索能力较弱,一般只能搜索到函数优化问题的次优解,而不是最优解,特别是函数具有多个峰值时,遗传算法易陷入局部极小,不能找到真正的全局最优解。非线性规划因多采用梯度下降方法求解,而具有极强的局部搜索能力。因此,本源代码结合两种算法的优点,一方面采用遗传算法进行全局搜索,另一方面采用非线性规划进行局部搜索,以得到函数优化问题的全局最优解。实验证明,这种方法不仅能解决多峰函数寻优易陷入局部极小的问题,而且具有很高的迭代寻优效率,取得了满意的结果。-Global s
-
-
0下载:
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算
-
-
2下载:
求解非线性方程组方法有经典算法以及近年来流行的遗传算法.牛顿法及其改进形式,但是此类算法的收敛性在很大程度上依赖于初始点的选择,对于某些非线性方程组容易导致求解失败 为了克服经典算法的缺点,设计了求解非线性方程组的混合遗传算法,但依然对方程组和编码方法有很高要求。PSO是受到鸟群或者鱼群社会行为的启发而形成的一种基于种群的随机优化技术。它是一类随机全局优化技术,通过粒子间的相互作用发现复杂搜索空间中的最优区域。该算法是一种基于群体智能的新型演化计算技术,具有简单易实现、设置参数少、全局优化能力强
-
-
7下载:
遗传算法tsp问题 针对题目中物流配送路径优化问题,本文引入0-1规划思想,建立了带约束条件的物流配送问题的数学模型。求解时,引入遗传算法的编码方式,并针对分区数与客户数量相差较小的情况,灵活运用分区配送算法确定包含最优解的分区序列组,紧密结合枚举法使得其算法兼顾简单、快速的优点。应用Matlab软件可执行得到最短路径。兼顾时间因素导致的复杂影响,我们引入了惩罚函数,并通过设定惩罚系数,进一步由最短路径求得最优路径。-Genetic algorithm tsp problem of logist
-
-
0下载:
遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算
-
-
1下载:
遗传算法提供了求解非线性规划的通用框架,它不依赖于问题的具体领域。遗传算法的优点是将问题参数编码成染色体后进行优化, 而不针对参数本身, 从而不受函数约束条件的限制; 搜索过程从问题解的一个集合开始, 而不是单个个体, 具有隐含并行搜索特性, 可大大减少陷入局部最小的可能性。而且优化计算时算法不依赖于梯度信息,且不要求目标函数连续及可导,使其适于求解传统搜索方法难以解决的大规模、非线性组合优化问题。(Genetic algorithm provides a general framework f
-
-
1下载:
Matlab 遗传算法(Genetic Algorithm)优化工具箱是基于基本操作及终止条件、二进制和十进制相互转换等操作的综合函数库。其实现步骤包括:通过输入及输出函数求出遗传算法主函数、初始种群的生成函数,采用选择、交叉、变异操作求得基本遗传操作函数。以函数仿真为例,对该函数优化和GA 改进,只需改写函数m 文件形式即可。(The Matlab Genetic Algorithm optimization toolbox is a comprehensive function librar
-