搜索资源列表
PSO-SVMface
- 基于PSO训练SVM的人脸识别 利用支持向量机在学习能力方面表现的良好性能,结合核主元分析特征提取方法,将其应用于人脸识别中,该方法在实验中表现了良好的识别性能,为人脸识别领域提供了一条新的识别途径-PSO-based SVM for face recognition training using support vector machine learning ability in the performance of good performance, combined with KPCA
SVMhybridsystem
- A distributed PSOSVM hybrid system with feature selection and parameter optimization -Abstract This study proposed a novel PSO–SVM model that hybridized the particle swarm optimization (PSO) and support vector machines (SVM) to improve the clas
pso-svm-work
- ANN classification using PSO
chapter_PSO
- 用psoSVMcgForClass.m实现对分类问题用PSO来优化SVM参数的问题-Use psoSVMcgForClass. M for classification problems using PSO to optimize parameters of SVM
PSO-SVM
- 用粒子群算法PSO,优化支持向量机SVM,提高故障分类精度。-Using particle swarm optimization (PSO, optimization of support vector machine SVM, improve the fault classification accuracy.
PSO--svm
- 用简单粒子群算法PSO优化支持向量机SVM,提高故障分类精度。-Using particle swarm optimization (PSO, optimization of support vector machine SVM, improve the fault classification accuracy.
PSO-LSSVM
- 利用改进PSO算法对LS-SVM进行参数优化,参数 和 的取值范围分别为 和 ,粒子种群数量为 25,迭代次数为 100,惯性权重因子 和 取0.9和0.1,学习因子 和 均取2。-The parameters of PS-SVM are optimized by using the improved PSO algorithm. The range of parameters is 25, the number of particles is 25, the number of iterati
PSO-LSSVM-CLASS
- 经过优化得到的参数组,利用优化的参数构建LS-SVM模型,然后使用训练样本对其进行训练。 利用训练后的LS-SVM对测试样本进行分类,-The optimized parameters are used to construct the LS-SVM model with optimized parameters, and then trained using training samples. Using the trained LS-SVM to classify the tes