搜索资源列表
chapter3
- 数据挖掘实战Python入门,用来做数据分析的法宝,偏向于实战,内有注释-data mining
python-code-for-Machine-learning
- 用于机器学习的全方位python代码,包括K-近邻算法、决策树、朴素贝叶斯、Logistic 回归 、支持向量机、利用 AdaBoost 元算法提高分类性能、预测数值型数据:回归、树回归、利用 K-均值聚类算法对未标注数据分组、使用 Apriori 算法进行关联分析、使用 FP-growth 算法来高效分析频繁项集、利用 PCA 来简化数据、利用 SVD 简化数据、大数据与 MapReduce-The full range of python code for machine learning
starwar-visualization-master
- 使用python实现的星球大战电影数据的分析,使用flask框架可视化的显示每部电影中的人物,种族等的关系。(Using Python to analyze Star Wars movie data, use the flask framework visually to display the characters, races, and relationships in each movie.)
drawtable
- python 画图分析数据,实现直方图直观的分析和理解(Python drawing analysis data)
_1_ver1_2
- 概率论作业1,使用adult数据集,进行数据分析(Probability theory job 1, using the adult data set to carry out data analysis)
bp神经网络
- 根据Ecotect 模拟的12种不同的建筑形状进行能量分析,数据集包括768个样本和8个特征属性,旨在预测房屋的热负荷和冷负荷。BP神经网络(According to the 12 different building shapes simulated by Ecotect, we carry out energy analysis. The dataset includes 768 samples and 8 characteristic attributes, aiming at predi
kNN(python实现)
- 分类算法,最近k临近算法,用于分类分析,属于数据处理(The classification algorithm, the nearest K approach, is used for classification analysis, which belongs to data processing.)
apriori
- 收集数据:使用任何方法 准备数据:任意数据类型都可以,因为我们只保存集合 分析数据:使用任何方法 训练算法:使用Apriori算法来找到频繁项集 测试算法:不需要测试过程 使用算法:用于发现频繁项集以及物品之间的关联规则 使用Apriori算法,首先计算出单个元素的支持度,然后选出单个元素置信度大于我们要求的数值,比如0.5或是0.7等。然后增加单个元素组合的个数,只要组合项的支持度大于我们要求的数值就把它加到我们的频繁项集中,依次递归。 然后根据计算的支持度选出来的频繁项集来
贝叶斯方法 -概率编程与贝叶斯推断 zip
- Probabilistic Programming and Bayesian Methods for Hackers是一本写给开发者的关于贝叶斯方法和概率问题的免费开源书。贝叶斯方法的用途十分广泛,在经济学上能找出一堆的例子。而在IT行业,机器学习是非常典型的一个应用。而机器学习也是本书作者写本书的一个重要的理由。 本书选择了Python作为编程语言,这一点都不奇怪,Python在科研和数据分析上的应用是非常方便和普遍的,比如大名鼎鼎的Numpy等。作者在本书中使用另一个库PyMC,它依赖
神经网络与深度学习
- 神经网络与深度学习 免费电子书 ,全高清,免费下载(Neural network and deep learning, full HD, free download)
Python机器学习基础教程(完整电子版)
- 本书是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。(This book is an introduction to machine learning, introduced in Python langua
python基础数据分析实例
- 假设要分析的数据包括属性age。数据元组的年龄值为(按递增顺序)13、15、16、19、20、20、21、22、22、25、25、25、25、25、30、33、35、35、35、36、40、45、46、52、70。另外,假设一家医院用上述年龄属性对所选样本受试者的年龄和体脂数据进行测试,得到结果,并执行下列操作: 1、将上述数据保存在逗号分隔值文件中。 2、将逗号分隔值文件中的数据读入R中的变量。 3、年龄和脂肪百分比的平均、中等和标准差是多少? 4、这个时代的模式是什么?评论数据的形式(即双峰
神经网络数据预测
- 使用遗传算法改进的神经网络算法,对某地区用电进行预测,并分析预测的误差大小,使用python