搜索资源列表
python-code-for-Machine-learning
- 用于机器学习的全方位python代码,包括K-近邻算法、决策树、朴素贝叶斯、Logistic 回归 、支持向量机、利用 AdaBoost 元算法提高分类性能、预测数值型数据:回归、树回归、利用 K-均值聚类算法对未标注数据分组、使用 Apriori 算法进行关联分析、使用 FP-growth 算法来高效分析频繁项集、利用 PCA 来简化数据、利用 SVD 简化数据、大数据与 MapReduce-The full range of python code for machine learning
Ch02
- 实现了KNN算法,非常好用,适合初学者分析算法流程(implement KNN algorithm)
image-sentiment-analysis
- 图片情感分析模型,基于卷积神经网络,以颜色特征为依据进行情感分类,图片情感极性分为积极和消极两类。(The model can extract the hue, brightness, contrast and other information from a picture to represent the emotional polarity of the image. The image sentiment analysis model is using convolution neura
starwar-visualization-master
- 使用python实现的星球大战电影数据的分析,使用flask框架可视化的显示每部电影中的人物,种族等的关系。(Using Python to analyze Star Wars movie data, use the flask framework visually to display the characters, races, and relationships in each movie.)
用ltp和nltk生成句法树
- 利用哈工大ltp和nltk工具,生成依存句法分析树(Generating dependency parsing tree by using LTP and nltk tools of Harbin University of Technology)
drawtable
- python 画图分析数据,实现直方图直观的分析和理解(Python drawing analysis data)
_1_ver1_2
- 概率论作业1,使用adult数据集,进行数据分析(Probability theory job 1, using the adult data set to carry out data analysis)
dangdang
- 运用python正则表达式分析网页(图书信息)(Using regular expressions to analyze web pages (book information))
bp神经网络
- 根据Ecotect 模拟的12种不同的建筑形状进行能量分析,数据集包括768个样本和8个特征属性,旨在预测房屋的热负荷和冷负荷。BP神经网络(According to the 12 different building shapes simulated by Ecotect, we carry out energy analysis. The dataset includes 768 samples and 8 characteristic attributes, aiming at predi
kNN(python实现)
- 分类算法,最近k临近算法,用于分类分析,属于数据处理(The classification algorithm, the nearest K approach, is used for classification analysis, which belongs to data processing.)
k_means
- 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。(It is a statistical method. Through orthogonal transformation, a set of variables that can be correlated can be transformed into a group of linearly irrel
SVM
- SVM(Support Vector Machine)指的是支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。(It is a common discriminant method. In machine learning, it is a supervised learning model, usually used for pattern recognition, classification and regression an
sentiwordnet
- python3.6下英文文本预处理和情感分析(English text preprocessing and emotional analysis under python3.6)
apriori
- 收集数据:使用任何方法 准备数据:任意数据类型都可以,因为我们只保存集合 分析数据:使用任何方法 训练算法:使用Apriori算法来找到频繁项集 测试算法:不需要测试过程 使用算法:用于发现频繁项集以及物品之间的关联规则 使用Apriori算法,首先计算出单个元素的支持度,然后选出单个元素置信度大于我们要求的数值,比如0.5或是0.7等。然后增加单个元素组合的个数,只要组合项的支持度大于我们要求的数值就把它加到我们的频繁项集中,依次递归。 然后根据计算的支持度选出来的频繁项集来
face_recognition-master
- USB摄像头人脸检测与识别,实时分析,实时获取人脸部信息,python语言开发。(Face detection and recognition of USB camera and real-time analysis.)
Python Neo4j医药知识图谱自动问答系统源码
- Python+Neo4j医药知识图谱自动问答系统源码,知识图谱构建,自动问答,基于kg的自动问答。以疾病为中心的一定规模医药领域知识图谱,并以该知识图谱完成自动问答与分析服务。(Python+Neo4j Medical Knowledge Atlas Automatic Question and Answer System source code, knowledge atlas construction, automatic question and answer, based on kg a
python实现分段线性表示
- 按照自顶向下和自底向上分析时间序列趋势和转折点(Found the turning point from bottom to the top and from top to the bottom)
Python机器学习基础教程(完整电子版)
- 本书是机器学习入门书,以Python语言介绍。主要内容包括:机器学习的基本概念及其应用;实践中最常用的机器学习算法以及这些算法的优缺点;在机器学习中待处理数据的呈现方式的重要性,以及应重点关注数据的哪些方面;模型评估和调参的高级方法,重点讲解交叉验证和网格搜索;管道的概念;如何将前面各章的方法应用到文本数据上,还介绍了一些文本特有的处理方法。(This book is an introduction to machine learning, introduced in Python langua
python基础数据分析实例
- 假设要分析的数据包括属性age。数据元组的年龄值为(按递增顺序)13、15、16、19、20、20、21、22、22、25、25、25、25、25、30、33、35、35、35、36、40、45、46、52、70。另外,假设一家医院用上述年龄属性对所选样本受试者的年龄和体脂数据进行测试,得到结果,并执行下列操作: 1、将上述数据保存在逗号分隔值文件中。 2、将逗号分隔值文件中的数据读入R中的变量。 3、年龄和脂肪百分比的平均、中等和标准差是多少? 4、这个时代的模式是什么?评论数据的形式(即双峰
Python机器学习_预测分析核心算法
- Python机器学习_预测分析核心算法(Python machine learning_ Prediction analysis core algorithm)